Với P là SNT. Chứng minh: aP đồng dư a (mod P)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
AH
Akai Haruma
Giáo viên
14 tháng 1 2020
Bạn tham khảo lời giải tại đây:
Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến
HM
1 tháng 3 2022
\(\overline{abc\equiv0}\) (mod 21)
<=> 100a +10b+c\(\equiv\)0 (mod 21)
<=> 84a+16a+10b+c\(\equiv\)0 (mod 21)
<=> 16a+10b+c\(\equiv\)0 (mod 21) vì 84\(⋮\)21
<=> 64a+40b+4c\(\equiv\)0 (mod 21)
<=> 63a+a+42b-2b+4c\(\equiv\)0 (mod 21)
<=> a-2b+4c\(\equiv\)0 (mod 21) đpcm
TD
0
LN
29 tháng 12 2017
Bạn tự suy nghĩ đi (a-2b)+4c đồng dư với 0 modul 21 thì sao.
NQ
0
18 tháng 3 2019
Ta có : a ≡ b (mod m) => a - b m (m (a - b)
và b ≡ c (mod m) => b - c m (m (b - c)
Vì a - c = (a - b) + (b - c) => a - c m (tính chất chia hết của tổng) hay
a ≡ c (mod m).
Cái này là định lí Fermat nhỏ mà nhỉ
chứng minh bằng cách dùng hệ quả của định lý Euler.
https://diendantoanhoc.net/topic/123358-ch%E1%BB%A9ng-minh-%C4%91%E1%BB%8Bnh-l%C3%BD-fermat-nh%E1%BB%8F/
Xem tại link này(Mik ngại viết lắm)