chứng minh \(n^2+13n+62̸\) không chia hết cho 169
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt un = 13n – 1
+ Với n = 1 thì u1 = 13 – 1 = 12 chia hết 6
+ Giả sử: uk = 13k – 1 chia hết cho 6.
⇒ uk + 1 = 13k + 1 – 1
= 13k+1 + 13k – 13k – 1
= 13k(13 – 1) + 13k – 1
= 12.13k + uk.
Mà 12.13k ⋮ 6; uk ⋮ 6.
⇒ uk + 1 ⋮ 6.
⇒ un ⋮ 6 với mọi n ∈ N.
hay 13n – 1 ⋮ 6 với mọi n ∈ N.
a) Ta có: \(n^2+7n+22=\left(n+2\right)\left(n+5\right)+12\)
*) Nếu \(n+2⋮3\)thì \(\left(n+2\right)+3⋮3\)hay \(n+5⋮3\)
\(\Rightarrow\left(n+2\right)\left(n+5\right)⋮9\)
Mà 12 không chia hết cho 9 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 9
*) Nếu n + 2 không chia hết cho 3 thì n + 5 không chia hết cho 3 suy ra \(\left(n+2\right)\left(n+5\right)\)không chia hết cho 3
Mà 12 chia hết cho 3 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 3 nên không chia hết cho 9
Vậy \(n^2+7n+22\)không chia hết cho 9 (đpcm)
b) \(n^2-5n-49=\left(n+4\right)\left(n-9\right)-13\)
*) Nếu \(n+4⋮13\)thì \(\left(n+4\right)-13⋮13\)hay \(n-9⋮13\)
\(\Rightarrow\left(n+4\right)\left(n-9\right)⋮169\)
Mà 13 không chia hết cho 169 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 169
*) Nếu n + 4 không chia hết cho 13 thì n - 9 không chia hết cho 13 suy ra \(\left(n+4\right)\left(n-9\right)\)không chia hết cho 13
Mà 13 chia hết cho 13 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 13 nên không chia hết cho 169
Vậy \(n^2-5n-49\)không chia hết cho 169 (đpcm)
a) G/s phản chứng \(n^2+7n+22⋮9\)
=> \(n^2+4n+4+\left(3n+18\right)⋮9\)
=> \(\left(n+2\right)^2+3\left(n+6\right)⋮9\)
=> \(\left(n+2\right)^2+3\left(n+6\right)⋮3\)
=> \(\left(n+2\right)^2⋮3\)
=> \(\left(n+2\right)^2⋮9\)
Mà: \(\left(n+2\right)^2+\left(3n+18\right)⋮9\)
=> \(3n⋮9\)
=> \(n⋮3\)
Nhưng khi đó thì: \(n^2+7n⋮3\)nhg 22 ko chia hết cho 3
=> \(n^2+7n+22\)không chia hết cho 3 => Ko thể chia hết cho 9
=> Điều giả sử là sai
=> TA CÓ ĐPCM
n^3 - 13n = n^3 - n -12n= n(n^2-1) - 6.2n= n(n-1)(n+1) - 6.2n
Ta có n(n-1)(n=1) là tích 3 số nguyên nên chia hết cho 2, 3. Mà 2 và 3 nguyên tố cùng nhau. Vậy n(n-1)(n+1) chia hết cho 2x3=6; Do đó n^3-13n= n(n-1)(n=1) -6.2n chia hết cho 6