15/139
Cho tam giác ABC cân tại A có D thuộc AB. Kẻ DE//BC(E thuộc AC). Chứng minh 2BE > BD + EC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADE có \(\widehat{ADE}=\widehat{AED}\)
nên ΔADE cân tại A
b: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
a,DE//BC--->C=E,B=D(đồng vị)
--->tam giác AED là tam giác cân
b,AE=AD
AC=AB
--->EC=BD
Xét tg CBD và tg BCE có
CB : chung
B=C
EC=DB
--->tg CBD = tg BCE
--->CD=EB(Cặp cạnh tương ứng)
a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
mà AB=AC
nên AD=AE
hay ΔADE cân tại A
b: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
DO đó: ΔABE=ΔACD
Suy ra: BE=CD
mấy câu trên thì tôi làm được rồi ấy, chỉ có câu D tôi bí thôi...
tamgiac ABC can tai A(gt) => goc ABC = goc ACB (1)
co DE // BC (gt)
goc ADE dong vi goc DBC
goc AED dong vi goc ECB
tu 3 dk tren => goc ADE = goc DBC va goc AED = goc ECB (2)
(1)(2) => goc ADE = goc AED
=> tamgiac ADE can tai A (dau hieu)
b, tamgiac ABC can tai A (gt) => AB = AC
tamgiac ADE can tai A (cau a) => AD = AE
ma AD + DB = AB va AE + EC = AC
nen BD = EC (4)
goc BDE la goc ngoai cua tamgiac ADE => goc BDE = goc A + goc AED (tc)
goc CED la goc ngoai cua tamgiac ADE => goc CED = goc A + goc ADE (tc)
ma goc AED = goc ADE
nen BDE = goc CED (5)
xet tamgiac DEB va tamgiac EDC co : DE chung (6)
(4)(5)(6) => tamgiac DEB = tamgiac EDC (c - g - c)
=> BE = CD (dn)
a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
b: ΔDEC vuông tại E
=>DE<DC
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
d: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
e: gọi giao của CF và AB là H
Xét ΔBHC có
BF,CA là đường cao
BF cắt CA tại D
=>D là trực tâm
=>HD vuông góc BC tại E
=>H,D,E thẳng hàng
=>BA,DE,CF là trực tâm