K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019
https://i.imgur.com/1WSSjAx.jpg
HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề \(P \Rightarrow Q\): “Nếu tứ giác ABCD là hình bình hành thì nó có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.

Mệnh đề này đúng vì “hai đường chéo cắt nhau tại trung điểm của mỗi đường” là tính chất của hình hình hành.

b) Mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) là mệnh đề \(Q \Rightarrow P\), được phát biểu là: “Nếu tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường thì nó là hình bình hành”.

Gọi O là trung điểm của MN,I là trung điểm của DEVì \(\hept{\begin{cases}DM//BC\left(gt\right)\\NE//BC\left(gt\right)\end{cases}\Rightarrow}DM//NE\)Xét tam giác ANE có DM//NE(cmt) và D là trung điểm của AE( vì...)\(\Rightarrow M\)là trung điểm của AN\(\Rightarrow AM=MN\left(1\right)\)Xét hình thang MDBC có: MD//BC và E là trung điểm của DB(vì...)\(\Rightarrow N\)là trung điểm của MC\(\Rightarrow MN=NC\left(2\right)\)Từ (1) và (2) \(\Rightarrow...
Đọc tiếp

Gọi O là trung điểm của MN,I là trung điểm của DE

Vì \(\hept{\begin{cases}DM//BC\left(gt\right)\\NE//BC\left(gt\right)\end{cases}\Rightarrow}DM//NE\)

Xét tam giác ANE có DM//NE(cmt) và D là trung điểm của AE( vì...)

\(\Rightarrow M\)là trung điểm của AN

\(\Rightarrow AM=MN\left(1\right)\)

Xét hình thang MDBC có: MD//BC và E là trung điểm của DB(vì...)

\(\Rightarrow N\)là trung điểm của MC

\(\Rightarrow MN=NC\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AM=MN=NC\)

Vì O là trung điểm của MN \(\Rightarrow OM=ON=\frac{1}{2}MN\)

\(\Rightarrow OM+MA=ON+NC\)( vì MA=NC(cmt))

\(\Rightarrow AO=OC\)

\(\Rightarrow O\)là trung điểm của AC

CMTT \(AI=IB\)

\(\Rightarrow I\)là trung điểm của AB

Xét tam giác ABC có: 

I là trung điểm của AB(cmt) và O là trung điểm của AC(cmt)

\(\Rightarrow OI\)là đường trung bình của tam giác ABC

\(\Rightarrow OI=\frac{1}{2}BC\left(tc\right)=2\)(cm) vì BC=4cm

Xét hình thang MDEN có O là trung điểm của MN (c.vẽ) ,I là trung điểm của DE 

\(\Rightarrow OI\)là đường trung bình của hình thang MDEN

\(\Rightarrow\frac{MD+NE}{2}=OI\left(tc\right)\)

\(\Rightarrow MD+NE=4\left(3\right)\)

Xét tam giác ANE có: M là trung điểm của AN,D là trung điểm của AE

\(\Rightarrow MD\)là đường trung bình của tam giác ANE

\(\Rightarrow MD=\frac{1}{2}NE\)Hay NE=2MD(4)

THay (4) vào (3) ta được:

\(3MD=4\)

\(\Rightarrow MD=\frac{4}{3}\left(cm\right)\)

\(\Rightarrow NE=\frac{8}{3}\left(cm\right)\)

 

 

0
9 tháng 10 2021

a, Ta có:AM+AN=OM-OA+ON-OA=OM+ON+AC=OC+AC=3/2OC

GA+3GB+GC+OD=2GB+OD=OB+OD=0

C,

27 tháng 8 2016

a) Vì tam giác AFB đồng dạng với ACF(g.g) nên: 
AF/AC=AB/AF hay AF^2=AB.AC => AF=căn(AB.AC) ko đổi 
Capture.PNG

Mà AE=AF (T/cTtuyen) nên E, F cùng thuộc đường tròn bán kính căn(AB.AC) 
b)Ta có: OI vuông góc với BC (T/ đường kính và dây) 
Các điểm E, F, I cùng nhìn OA dưới 1 góc ko đổi 90 độ nên O,I,F,A,E cùng thuộc đường tròn đường kính OA 
Ta có góc FIA=FOA(Cùng chắn cung FA trong đường tròn (OIFAE) 
Mà góc FKE=FOA( Cùng bằng \(\frac{1}{2}\) góc FOE) 
Suy ra góc FIA=FKE, nhưng hai góc này lại ở vị trí SLT nên KE//AB 

31 tháng 8 2016

bạn vẽ cái đó bằng phần mềm j vậy, chỉ mik nha

NV
27 tháng 12 2022

IJ là đường trung bình của hình thang \(\Rightarrow\left\{{}\begin{matrix}IJ||AB\\IJ=\dfrac{AB+CD}{2}\end{matrix}\right.\)

Qua G kẻ đường thẳng song song AB lần lượt cắt SB, SA tại E và F

\(\Rightarrow\) Tứ giác IJEF là thiết diện của (GIJ) và chóp

\(EF||AB||IJ\Rightarrow IJEF\) là hình thang

Gọi M là trung điểm AB

Theo tính chất trọng tâm và định lý Talet:

\(\dfrac{EF}{AB}=\dfrac{SG}{SM}=\dfrac{2}{3}\)

Để IJEF là hình bình hành \(\Leftrightarrow IJ=EF\)

\(\Leftrightarrow\dfrac{2}{3}AB=\dfrac{AB+CD}{2}\Leftrightarrow\dfrac{1}{3}AB=CD\)

\(\Rightarrow AB=3CD\)

NV
7 tháng 10 2020

\(\left\{{}\begin{matrix}\overrightarrow{MN}=\overrightarrow{AB}\\\overrightarrow{MN}=\overrightarrow{DC}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\) ABCD là hbh