rút gon biểu thức sau : A= 4 + 2^2+ 2^3 +...+ 2^2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2² + 2³ + 2⁴ + ... + 2²⁰²¹
⇒ 2A = 2³ + 2⁴ + 2⁵ + ... + 2²⁰²²
⇒ A = 2A - A
= (2³ + 2⁴ + 2⁵ + ... + 2²⁰²²) - (2² + 2³ + 2⁴ + ... + 2²⁰²¹)
= 2²⁰²² - 2²
= 2²⁰²² - 4
A= 22+23+24+25+...+22021
2A-A=23+24+25+...+22022
2A-A=(22+23+24+25+...+22021)-(23+24+25+...+22022)
A=22-22022
a) ĐKXĐ: x>=0 , 2x-6+\(\sqrt{x^2-9}\)\(\ne0\)\(\Leftrightarrow x\ne3\)
ĐKXĐ: \(x^2-9\ge0\) và \(2x-6+\sqrt{x^2-9}\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ge9\\2\left(x-3\right)+\sqrt{x^2-9}\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\2\left(x-3\right)+\sqrt{x^2-9}\ne0\end{cases}}\)hoặc \(\hept{\begin{cases}x\le-3\\2\left(x-3\right)+\sqrt{x^2-9}\ne0\end{cases}}\)
*Với x>=3 thì 2(x-3) + căn bậc hai của (x^2 - 9) >=0
vậy 2(x-3) + căn bậc hai của (x^2 - 9) =0 khi x=3 => 2(x-3) + căn bậc hai của (x^2 - 9) khác 0 khi x khác 3
*Với x<=-3
Giả sử căn bậc hai của (x^2 - 9) + 2(x-3) = 0 nên căn bậc hai của (x^2 - 9) = -2(x-3)
<=> x^2 - 9 =4(x-3)^2 (vì x<=-3 nên -2(x-3)>=0)
<=> x^2 - 9 = 4x^2 - 24x +36
<=> 3x^2 - 24x + 45= 0
<=> 3(x-5)(x-3)=0
<=> x= 5 và x = 3 (không thỏa điều kiện)
Do đó căn bậc hai của (x^2 - 9) + 2(x-3) khác 0 với mọi x<=-3
Vậy ĐKXĐ là x>3 và x<=-3
Câu b để làm sau
\(x\ne0\)
chia 2x
\(\Leftrightarrow\left(x^2-2\right)^2-\left(x^4-4x^2+2\right)=\left(x^4-4x^2+4\right)-x^4+4x^2-2=2\)
\(A=2^2+2^2+2^3+...+2^{2021}\\ 2A=2^3+2^3+2^4+...+2^{2022}\\ A=2^{2022}+2^3-2^2-2^2\)
\(2A=8+2^3+...+2^{2022}\)
\(\Leftrightarrow A=2^{2022}+8-4-2^2=2^{2022}\)