tìm x,y sao cho biểu thức :
3x2 + 9y2 - 6xy - 16x - 12y + 2049
đạt GTLN , tìm giá trị đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2x^2+9y^2-6xy-6x-12y+2024
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2024
A = (x -3y)^2 +4(x -3y) + 4 + x^2 -10x +25 + 1995
A = (x -3y +2)^2 + (x -5)^2 + 1995 \geq 1995
Min A = 1995
x - 5 = 0 => x = 5
Và x - 3y + 2 = 0 hay 5 -3y +2 = 0 => -3y = -7 => y = 7/3
\(K\)\(nha!~!\)
Bài này đến lớp 8 còn làm đc (bọn chuyên).
Không khó đau, mình hd nhé:
Bạn thấy có 2x^2 và 9y^2 không
2x^2 không là bình phương của gì cả và không ghép được với các số sau nên tách ra.
Giải như bình thường.
\(x^2+x^2+\left(3y\right)^2-6xy-6x-12y+2010\)
\(\left(x-3y\right)^2-4x-12y+x^2-2x+2010\)
\(\left(x-3y\right)^2-4\left(x-3y\right)+4+x^2-2x+1+2005\)
\(\left(x-3y+2\right)^2+\left(x-1\right)^2+2005\ge2005\)
Lời giải:
$A=(x-3y)^2-15=[37-3(-1)]^2-15=40^2-15=1585$
Câu 1 Thực hiện phép tính :
a) 2x( 3x2 - 4x + 2 )
b) 2x( 3x + 5 ) - 3 ( 2x2 - 2x + 3 )
GIẢI GIÙM EM ĐC KO Ạ
\(A=\left(9y^2-6xy+12y\right)+4x^2-16x+2012\)
\(=\left[\left(3y\right)^2-2.3y\left(x-2\right)+\left(x-2\right)^2\right]-\left(x-2\right)^2+4x^2-16x+2012\)
\(=\left(3y-x+2\right)^2+3x^2-12x+2008\)
\(=\left(3y-x+2\right)^2+3\left(x^2-2.x.2+4\right)-3.4+2008\)
\(=\left(3y-x+2\right)^2+3\left(x-2\right)^2+1996\ge1996\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3y-x+2=0\\x-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=2\end{cases}}\)
A=3x2 + 9y2 - 6xy - 16x - 12y + 2049
3A=9x2 + 27y2 - 18xy - 48x - 36y + 6147
=(3x-3y-8)2+18y2-84y+6083
=(3x-3y-8)2+2.(3y-7)2+5985>5985
Dấu = xảy ra khi 3y-7=0 và 3x-3y-8=0=>y=7/3 và x=5=>3A=5985=>a=1995
Amin=1995<=>y=7/3 và x=5
mk chỉ tìm được GTNN thôi
thank bạn