Cho X = {0;1;2;3;5;7;9}
a. Hỏi có bao nhiêu số tự nhiên lẻ gồm 4 chữ số khác nhau.
b. Hỏi có bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và số đó chia hết cho 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz
Lời giải:
Nếu $x>0$ thì $-x< 0$. Do đó $-x< 0< x\Rightarrow -x< x$. Đáp án A sai
Nếu $x>0\Rightarrow -x< 0$. Đáp án B sai
Nếu $x< 0\Rightarrow -x>0$. Do đó $-x>0>x\Rightarrow -x>x$. Đáp án C sai
Nếu $x>0\Rightarrow -x< 0$. Đáp án D đúng (chọn)
vì x,y,z>0 nên áp dụng bđt côsi ta có
x+y >= 2\(\sqrt{xy}\)
y+z >= 2\(\sqrt{yz}\)
z+x >= 2\(\sqrt{xz}\)
\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)
>= 8xyz
Dấu = xảy ra <=> x=y=z
Ta có:
\(\frac{x}{x+1}=1-\frac{1}{x+1}\)
\(\frac{y}{y+1}=1-\frac{y}{y+1}\)
\(\frac{z}{z+4}=1-\frac{4}{z+4}\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)
\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)
Ta có x. (-x)=x.x.(-1)=-x^2>0
==> x^2<0 (vì âm của nó là dương) (1)
mà x>0==>x^2>0 (2)
Từ (1) và (2) ==> mâu thuẫn
Vậy x thuộc rỗng
Gọi chữ số cần tìm là \(\overline{abcd}\)
a/ Ta có d có 5 cách chọn, a có 5 cách chọn, b có 5 cách chọn, c có 4 cách chọn
\(\Rightarrow5.5.5.4=500\) số thỏa mãn
b/ Nếu \(d=0\Rightarrow\) a có 6 cách chọn, b có 5 cách chọn, c có 4 cách chọn
\(\Rightarrow6.5.4=120\) số
Nếu \(d=5\Rightarrow\) a có 5 cách chọn, b có 5 cách chọn, c có 4 cách chọn
\(\Rightarrow5.5.4=100\) số
Vậy có \(120+100=220\) số thỏa mãn