K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2021

HĐ g/đ là nghiệm pb
`x^2=mx-4`
`<=>x^2-mx+4=0`
(d) tiếp xúc (p)
`<=>` pt có nghiệm kép
`=>\Delta=0`
`<=>m^2-16=0`
`<=>` $\left[ \begin{array}{l}m=4\\m=-4\end{array} \right.$

30 tháng 5 2019

Đáp án B

+ Tọa độ giao điểm của hai đường thẳng d và d’ là nghiệm của hệ phương trình:

suy ra d và d’ cắt nhau tại M( m-1; 3m-1)

+  Vì ba đường thẳng d; d’ ; d’’ đồng quy nên d’’ qua M ta có

3m-1= -m( m-1) + 2 hay m2+ 2m-3=0

Suy ra m=1 hoặc m= -3

Với m= 1 ta có ba đường thẳng là d: y= x+ 2; d’ :  y= 3x+ 2 và d’’: y= -x+ 2  phân biệt và đồng quy tại M(0; 2).

Với m= -3  ta có d và d’’ trùng nhau suy ra m= -3 không thỏa mãn

Vậy m= 1 là giá trị cần tìm.

Chọn B.

2 tháng 9 2018

Đáp án C

30 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2-3x+2=mx+2\)

=>\(x^2-3x+2-mx-2=0\)

=>\(x^2+x\left(-m-3\right)=0\)

\(\Delta=\left(-m-3\right)^2-4\cdot1\cdot1=\left(m+3\right)^2-4=\left(m+3-2\right)\left(m+3+2\right)=\left(m+1\right)\left(m+5\right)\)

Để (P) tiếp xúc với (d) thì Δ=0

=>(m+1)(m+5)=0

=>\(\left[{}\begin{matrix}m+1=0\\m+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-5\end{matrix}\right.\)

(d): VTPT là (m;1)

(d'): VTPT là (m;-4)

(d) vuông góc (d')

=>m^2-4=0

=>m=2 hoặc m=-2

=>Có 2 số nguyên m thỏa mãn

a: Khi m=4 thì y=4x-4

loading...

b: PTHDGĐ là:

x^2-mx+4=0

Δ=(-m)^2-4*1*4=m^2-16

Để (P) tiếpxúc với(d) thì m^2-16=0

=>m=4 hoặc m=-4

21 tháng 3 2023

E cảm ơn ạ

AH
Akai Haruma
Giáo viên
19 tháng 4 2021

Lời giải:

PT hoành độ giao điểm:

$2x^2-mx-1=0(*)$

$\Delta=m^2+8>0$ với mọi $m$ đồng nghĩa $(P)$ và $(d)$ luôn cắt nhau tại 2 điểm $A,B$ phân biệt với mọi $m$

Áp dụng  định lý Viet: \(\left\{\begin{matrix} x_A+x_B=\frac{m}{2}\\ x_Ax_B=-\frac{1}{2}\end{matrix}\right.\)

Khoảng cách từ $O$ đến $AB$ là:

$\frac{|m.0+1-0|}{\sqrt{m^2+1}}=\frac{1}{\sqrt{m^2+1}}$

$AB=\sqrt{(x_A-x_B)^2+(y_A-y_B)^2}$

$=\sqrt{(x_A-x_B)^2+(mx_A+1-mx_B-1)^2}$

$=\sqrt{(x_A-x_B)^2(m^2+1)}$

$=\sqrt{(x_A+x_B)^2-4x_Ax_B}.\sqrt{m^2+1}$

$=\sqrt{\frac{m^2}{4}+2}.\sqrt{m^2+1}$

$S_{OAB}=\frac{1}{2}\sqrt{\frac{m^2}{4}+2}.\sqrt{m^2+1}.\frac{1}{\sqrt{m^2+1}}=\frac{3m}{2}$

$m=\pm \sqrt{\frac{8}{35}}$

27 tháng 2 2019

b) (d) đi qua điểm A (2; 5) và B ( -2; 3) khi:

21 tháng 12 2021

 -4m+n=-2

sao thành 2n=10