Tìm x,y nguyên để a)x+y+xy=5
b)x+2y+xy=y
c)2x+3y+4xy=-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: x^2 + y^2 + xy = 7 <=> (x+y)^2 -2xy+xy=7 <=> (x+y)^2 - xy =7 (1)
x+y+xy=5 (2)
Đặt S=x+y, P=xy, điều kiện: S^2>=4P, ta có hệ mới:
(1) => S^2 -P=7(3)
(2) => S+p=5 <=> P=5-S (4)
giải ra S,P rồi đối chiếu điều kiện suy ra x,y.
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
a) \(xy+x+2y=5\Leftrightarrow xy+x+2y+2=7\Leftrightarrow\left(y+1\right)\left(x+2\right)=7\)
Vì x,y là số tự nhiên nên \(x,y\in N\)\(x,y\ge0\)\(\Rightarrow y+1\ge1;x+2\ge2\)
Từ đó ta có :
\(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\)
b) \(xy+2x+2y=-16\Leftrightarrow xy+2y+2x+4=-12\Leftrightarrow\left(y+2\right)\left(x+2\right)=-12\)
Lần lượt xét từng trường hợp , ta được :
(x;y) = (-14; -1) ; (-8 ; 0) ; (-6 ; 1) ; (-5 ;2) ; (-4 ;4)
a) \(\left(x+2\right)\left(y+1\right)=7=1.7=7.1\)
Hoặc \(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\in N\)
Hoặc\(\hept{\begin{cases}x+2=1\\y+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\notin N\\y=6\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;0\right)\)
b)\(\left(x+2\right)\left(y+2\right)=-1.12=-12.1=-2.6=-6.2=-3.4=-4.3\)
tương tự giải 6 TH là được
\(\left\{{}\begin{matrix}2xy+x+2y=5\\xy+3x-3y=5\end{matrix}\right.\)
\(\Rightarrow2xy+x+2y=xy+3x-3y\)
\(\Rightarrow2xy+x+2y-xy-3x+3y=0\)
\(\Rightarrow\left(2xy-xy\right)+\left(x-3x\right)+\left(2y+y\right)=0\)
\(\Rightarrow xy-2x+3y=0\)
\(\Rightarrow xy-2x+3y-6=-6\)
\(\Rightarrow x\left(y-2\right)+3\left(y-2\right)=-6\)
\(\Rightarrow\left(x+3\right)\left(y-2\right)=-6\)
Xét ước là xong,mấy câu kia tương tự
b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)
\(=x^4y+2xy-xy^4-2xy\)
\(=xy\left(x^3-y^3\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)
b)xy+2x-3y=8
<=> xy+2x-3y-6=8-6
<=> x(y+2)-3(y+2)=2
<=> (y+2)(x-3)=2
Vì x,y nguyên => y+2; x-3 \(\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Ta có bảng
x-3 | -2 | -1 | 1 | 2 |
x | 1 | 2 | 4 | 5 |
y+2 | -1 | -2 | 2 | 1 |
y | -3 | -4 | 0 | -1 |
a)x+xy+y=5
x.(1+y)+(1+y)-1=5
(1+y).(x+1)=5+1=6=1.6=(-1)(-6)=2.3=(-2)(-3)
Bạn giải từng trường hợp nha
b)(bn làm tuong tự nha) CHÚC CUTE<3