Cho tam giác ABC cân tại A, lấy điểm D bất kì thuộc AB. Trên tia AC lất điểm E sao cho BD=CE. BC cắt DE tại M.
CMR: MD=ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc DFB=góc ACB
góc DBF=góc ACB
=>góc DFB=góc DBF
=>ΔDBF cân tại D
b: Xét tứ giác DCEF có
DF//CE
DF=CE
=>DCEF là hình bình hành
a: Xét ΔMBD vuông tại D và ΔNCE vuông tại E co
MB=NC
góc MBD=góc NCE
=>ΔMBD=ΔNCE
=>MD=NE
b: Xet tứ giác MDNE có
MD//NE
MD=NE
=>MDNE là hình bình hành
=>MN cắt DE tại trung điểm của mỗi đường
=>I là trung điểm của DE
bạn ơi có sai đầu bài ko vậy
phải là trên tia đối của CA chứ
Đây là một bài toán rất hay mà mình đã gặp nhiều lần hồi lớp 8 (thực chất là bài này hay xuất hiện trong chuyên toán 7).
Bài này bạn vẽ thêm để tạo ra tam giác bằng nhau có 2 chứa 2 cạnh FD và FE.
Cụ thể, có những cách vẽ thêm sau:
-Cách 1: Vẽ DK // AC (K thuộc BC) rồi chứng minh tam giác DKF và FCE bằng nhau.
Hoặc EK//AB (K thuộc BC) rồi chứng minh tam giác BDF và CDK bằng nhau.
(2 cách vẽ là như nhau)
-Cách 2: Vẽ DK vuông góc BC, EH vuông góc BC. (K, H cùng thuộc BC).
Chứng minh tam giác DFK, EFH bằng nhau.
Mình không tiện nên chưa giải cụ thể được, bạn tự giải tiếp để có thêm kinh nghiệm nhé.
Khi nào bạn giải xong thì có thể tham khảo câu nâng cao: Chứng minh đường trung trực của DE luôn đi qua 1 điểm cố định.
Chúc bạn học tốt!
Chuyên toán 9.
Sao BC cắt DE được nhỉ ?