Cho số tự nhiên n >1 . CMR
\(n^4+4\)là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(n=2k\left(k\ge1\right)\) thì \(n^4+4^n\) đễ thấy nó là hợp số vì chia hết cho 4.
Với \(n=2k+1\) thì suy ra
\(n^4+4^n=n^4+4^{2k+1}\)
\(=n^4+4.4^{2k}=\left(n^4+4.4^kn^2+4.4^{2k}\right)-4.4^k\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2^{k+1}\right)^2\)
\(=\left(n^2+2^{2k+1}+2^{k+1}\right)\left(n^2+2^{2k+1}-2^{k+1}\right)\)
Đây là tích của 2 số lớn hơn 2 nên là hợp số.
Vậy \(n^4+4^n\) là hợp số với mọi số tự nhiên lớn hơn 1.
ko được vì ví dụ 2-2=0 mà 0 ko phải là hợp số cũng ko phải là số nguyên tố
n+2=2.3.4.5.6.7+2=2(1.3.4.5.6.7+1) là hợp số
n+3=2.3.4.5.6.7+3=3(1.2.4.5.6.7+1) là hợp số
n+4=2.3.4.5.6.7+4=4(1.2.3.5.6.7+1) là hợp số
n+2=2.3.4.5.6.7+5=5(1.2.3.4.6.7+1) là hợp số
n+2=2.3.4.5.6.7+6=6(1.2.3.4.5.6+1) là hợp số
n+2=2.3.4.5.6.7+7=7(1.2.3.4.5.6.7+1) là hợp số
n+2=2.3.4.5.6.7+2=2(1.3.4.5.6.7+1) là hợp số
n+3=2.3.4.5.6.7+3=3(1.2.4.5.6.7+1) là hợp số
n+4=2.3.4.5.6.7+4=4(1.2.3.5.6.7+1) là hợp số
n+2=2.3.4.5.6.7+5=5(1.2.3.4.6.7+1) là hợp số
n+2=2.3.4.5.6.7+6=6(1.2.3.4.5.6+1) là hợp số
n+2=2.3.4.5.6.7+7=7(1.2.3.4.5.6.7+1) là hợp số
n+2=2.3.4.5.6.7+2=2(1.3.4.5.6.7+1) là hợp số
n+3=2.3.4.5.6.7+3=3(1.2.4.5.6.7+1) là hợp số
n+4=2.3.4.5.6.7+4=4(1.2.3.5.6.7+1) là hợp số
n+2=2.3.4.5.6.7+5=5(1.2.3.4.6.7+1) là hợp số
n+2=2.3.4.5.6.7+6=6(1.2.3.4.5.6+1) là hợp số
n+2=2.3.4.5.6.7+7=7(1.2.3.4.5.6.7+1) là hợp số
Ta có :
\(\left(n+1\right)^4+n^4+1=\left(n+1\right)^4-n^2+n^4+n^2+1\)
\(=\left(n^2+2n+1\right)^2-n^2+n^4+n^2+1=\left(n^2+n+1\right)\left(n^2+3n+1\right)+\left(n^2+n+1\right)\left(n^2-n+1\right)\)
\(=\left(n^2+n+1\right)\left(2n^2+2n+2\right)=2\left(n^2+n+1\right)^2⋮\left(n^2+n+1\right)^2\)
N chia hết cho 2,3,4,5,6,7 => n +2 chia hết cho 2 ; n + 3 chia hết cho 3 ; n +4 chia hết cho4 ; N + 5 chia hết cho 5 ; n + 6 chia hết cho 6 ; m + 7 chia hết cho 7
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)
không thể chứng mình được đâu bạn nhé
Ta thấy 4 chia hết cho 2 nên nếu n là số chẵn thì n^4 +4 không thể là số nguyên tố rồi
Còn n là số lẻ thì rất ít khả năng 4^n + 4 là số nguyên tố
Bạn nên xem lại đề bài nhé
https://olm.vn/hoi-dap/question/997557.html
Trong đây mình đã làm bài như vậy rồi nhé ! :D
Ta có n4+4=n4+2.n2.n+4-4n2=(n2+2)2-(2n)2=(n2-2n+2)(n2+2n+2)
Vì n>1=>(n2-2n+2)>1;(n2+2n+2)>1
=>n4+4 có nhiều hơn 2 ước
=>n4+4 là hợp số