Cho Δ ABC tìm điểm I sao cho
\(a,3\overrightarrow{IA}+2\overrightarrow{IC}=\overrightarrow{0}\)
\(b,\overrightarrow{2IA}+\overrightarrow{3IB}=\overrightarrow{3BC}\)
\(c,\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{IC}=\overrightarrow{0}\)
a) Ta có:
\(3\overrightarrow{IA}+2\overrightarrow{IC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{IA}=-2\overrightarrow{IC}\)
\(\Leftrightarrow3\overrightarrow{IA}=-2\left(\overrightarrow{IA}-\overrightarrow{CA}\right)\)
\(\Leftrightarrow3\overrightarrow{IA}=-2\overrightarrow{IA}+2\overrightarrow{CA}\)
\(\Leftrightarrow3\overrightarrow{IA}+2\overrightarrow{IA}=2\overrightarrow{CA}\)
\(\Leftrightarrow5\overrightarrow{IA}=2\overrightarrow{CA}\)
\(\Leftrightarrow\overrightarrow{IA}=\frac{2}{5}\overrightarrow{CA}\)