Cho A = 3^1 + 3^2 + 3^3 +...+3^19. Hãy viết 2A +1 lũy thừa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 3 + 32 + 33 + ... + 32012
3A = 3 + 32 + 33 + 34 + ... + 32013
3A - A = (3 + 32 + 33 + 34 + ... + 32013) - (1 + 3 + 32 + 33 + ... + 32012)
2A = 32013 - 1
=> 2A + 1 = 32013 - 1 + 1
=> 2A = 32013
Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200
=> 2A = 2 + 22 + 23 + ....... + 2201
=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 )
=> A = 2201 - 1
=> A + 1 = 2201
A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200
2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201
2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )
- ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )
A = 2 ^ 201 - 1
=> A + 1 = 2 ^ 201
B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005
3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006
3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )
- ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )
2B = 3 ^ 2006 - 3
=> 2B = 3 ^ 2006
Vậy 2B + 3 là lũy thừa của 3
1) A = 1+2+2\(^2\) + ... + \(2^{200}\)
2A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{201}\)
2A - A = 2 + 2\(^2\) +2\(^3\) + ... + \(2^{201}\) - 1 - 2 - ... - 2\(^{200}\)
A = 2\(^{201}\) - 1
A+1 = 2\(^{201}\)
Vậy a + 1 = 2\(^{201}\)
2) C = 3 + 3\(^2\) + 3\(^3\) + ... + 3\(^{2005}\)
3C = 3\(^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\)
3C - C = \(3^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\) - 3 - 3\(^2\) - 3\(^3\) - ... - 3\(^{2005}\)
2C = 3\(^{2006}\) - 3
2C+3 = 3\(^{2006}\)
Vậy 2C + 3 là luỹ thừa của 3 ( Đpcm )
1.
A = 1 + 2 + 22 + 23 + ... + 2200
2A = 2 + 22 + 23 + 24 + ... + 2201
2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)
A = 2201 - 1
=> A + 1 = 2201 - 1 + 1
=> A + 1 = 2201
2.
B = 3 + 32 + 33 + ... + 32005
3B = 32 + 33 + 34 + ... + 32006
3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + ... + 32005)
2B = 32006 - 3
=> 2B + 3 = 32006 - 3 + 3
=> 2B + 3 = 32006
Ta có:
\(A=3+3^2+3^3+...+3^{10}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{11}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{11}\right)-\left(3+3^2+3^3+...+3^{10}\right)\)
\(\Rightarrow2A=3^{11}-3\)
\(\Rightarrow2A+3=3^{11}-3+3\)
\(\Rightarrow2A+3=3^{11}\)
Vậy \(2A+3=3^{11}\)
Em kiểm tra lại đề bài nhé.
c Câu hỏi của luongngocha - Toán lớp 6 - Học toán với OnlineMath
b. Câu hỏi của son goku - Toán lớp 6 - Học toán với OnlineMath
a. Câu hỏi của Trần Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath
a: Ta có: \(A=1+3+3^2+3^3+...+3^{2015}\)
\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2014}\cdot\left(1+3\right)\)
\(=4\cdot\left(1+3^2+...+3^{2014}\right)⋮4\)
b: Ta có: \(A=1+3+3^2+3^3+...+3^{2015}\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2013}\left(1+3+3^2\right)\)
\(=13\cdot\left(1+3^3+...+3^{2013}\right)⋮13\)