Biết Sin\(\alpha\) = \(\frac{5}{13}\) , tính Cos\(\alpha\) , tg\(\alpha\) , cotg\(\alpha\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\cos a=\sqrt{1-\left(\dfrac{7}{25}\right)^2}=\dfrac{24}{25}\)
\(\tan a=\dfrac{7}{25}:\dfrac{24}{25}=\dfrac{7}{24}\)
\(\cot a=\dfrac{24}{7}\)
ta có : \(tan\alpha+cot\alpha=3\Leftrightarrow\dfrac{sin\alpha}{cos\alpha}+\dfrac{cos\alpha}{sin\alpha}=3\)
\(\Leftrightarrow\dfrac{sin^2\alpha+cos^2\alpha}{sin\alpha.cos\alpha}=3\Leftrightarrow\dfrac{1}{sin\alpha.cos\alpha}=3\)
\(\Leftrightarrow sin\alpha.cos\alpha=\dfrac{1}{3}\) vậy \(sin\alpha.cos\alpha=\dfrac{1}{3}\)
\(\left(cosa-sina\right)^2=\frac{1}{25}\Leftrightarrow sin^2a+cos^2a-2sina.cosa=\frac{1}{25}\)
\(\Leftrightarrow\frac{sin^2a+cos^2a-2sina.cosa}{sin^2a}=\frac{1}{5sin^2a}=\frac{sin^2a+cos^2a}{5sin^2a}\)
\(\Leftrightarrow1+cot^2a-2cota=\frac{1}{5}+\frac{1}{5}cot^2a\)
\(\Leftrightarrow4cot^2a-10cota+4=0\Rightarrow\left[{}\begin{matrix}cota=2\\cota=\frac{1}{2}\end{matrix}\right.\)
Mr.VôDanhMr.VôDanh A di phò phò! Đã có người làm cho thí chủ, cớ sao lại gọi ni sư vào làm j??!
Ta có:
\(\begin{array}{l}\sin \left( { - \frac{{15\pi }}{2} - \alpha } \right) - \cos \left( {13\pi + \alpha } \right) = \sin \left( { -\frac{{16\pi }}{2} +\frac{{\pi }}{2} + \alpha } \right) - \cos \left( {12\pi + \pi + \alpha } \right) = \sin \left( {-8\pi + \frac{\pi }{2} - \alpha } \right) - \cos \left( { \pi + \alpha } \right) \\ = \sin \left( {\frac{\pi }{2} - \alpha } \right) + \cos \left( \alpha \right) = \cos \left( \alpha \right) + \cos \left( \alpha \right) = 2\cos \left( \alpha \right) = 2.\left( { - \frac{5}{{13}}} \right) = \frac{{ - 10}}{{13}}\end{array}\)
a/ \(\sin\alpha=\frac{C_đ}{C_h}\)
\(\cos\alpha=\frac{C_k}{C_h}\)
\(\Rightarrow\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{C_đ}{C_h}}{\frac{C_k}{C_h}}=\frac{C_đ}{C_k}=\tan\alpha\)
b/ \(\frac{\cos\alpha}{\sin\alpha}=\frac{\frac{C_k}{C_h}}{\frac{C_đ}{C_h}}=\frac{C_k}{C_đ}=\cot\alpha\)
c/ \(\tan\alpha.\cot\alpha=\frac{C_đ}{C_k}.\frac{C_k}{C_đ}=1\)
d/ \(\sin^2\alpha=\frac{C_đ^2}{C_h^2}\)
\(\cos^2\alpha=\frac{C_k^2}{C_h^2}\)
\(\Rightarrow\sin^2\alpha+\cos^2\alpha=\frac{C_đ^2+C_k^2}{C_h^2}=\frac{C_h^2}{C_h^2}=1\)
P/s: hok trc lp 9 hay sao mà lm bài bài này?
\(\cos \alpha = - \sqrt {1 - {{\left( { - \frac{5}{{13}}} \right)}^2}} = - \frac{{12}}{{13}}\) (vì \(\pi < \alpha < \frac{{3\pi }}{2}\))
\(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha sin\frac{\pi }{6} = \frac{{ - 12 + 5\sqrt 3 }}{{26}}\)
\(\cos \left( {\frac{\pi }{4} - \alpha } \right) = \cos \frac{\pi }{4}\cos \alpha + \sin \frac{\pi }{4}sin\alpha = \frac{{ - 17\sqrt 2 }}{{26}}\)
cot a=1/5 nên cosa/sina=1/5
=>sina=5cosa
\(1+cot^2a=\dfrac{1}{sin^2a}=1+\dfrac{1}{25}=\dfrac{26}{25}\)
nên \(sina=\dfrac{5}{\sqrt{26}}\Leftrightarrow cosa=\dfrac{1}{\sqrt{26}}\)
\(cot^4a+sin^2a-cos^2a\)
\(=\dfrac{1}{5^4}+25cos^2a-cos^2a\)
\(=\dfrac{1}{5^4}+24\cdot\dfrac{1}{26}=\dfrac{7513}{8125}\)
Giả sử góc đã cho là nhọn
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\frac{25}{169}}=\frac{12}{13}\)
\(tana=\frac{sina}{cosa}=\frac{5}{12}\)
\(cota=\frac{1}{tana}=\frac{12}{5}\)
quá chuẩn anh ơi