CMR: nếu (a+b+c)^2=3(a^2+b^2+c^2) thì a=b=c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)
TL:
1)
Ta có: \(2a^2+2b^2+2c^2=2ab+2ac+2bc\)
\(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow\left(a-b\right)^2=0\) và\(\left(a-c\right)^2=0\) và \(\left(b-c\right)^2=0\)
\(\Rightarrow a-b=0\) và \(â-c=0\) và \(b-c=0\)
=>a=b=c(đpcm)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(a+c-2b\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=6\left(a^2+b^2+c^2\right)-6\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\).
ta có (a+b+c)^2= a^2+b^2+c^2+2ab+2bc+2ac
nếu (a+b+c)^2=3(a^2+b^2+c^2)
=> 3a^2+3b^2+3c^2=a^2+b^2+c^2 +2ab+2bc+2ac
=> 2a^2+2b^2+2c^2=2ab+2bc+2ac
=>a^2+b^2+c^2=ab+bc+ac
=>a.a+b.b+c.c=ab+bc+ac
=>a=b=c
=> đpcm