tìm tất cả STN n chia hết :
a, 4n - 5 \(⋮\)13
b,5n+2 \(⋮\)7
c,3+7\(⋮̸\) 17
d,25n +3 \(⋮̸\) 53
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4n-5⋮13\)
\(\Rightarrow4n-5+13⋮13\Rightarrow4n+8⋮13\Rightarrow4\left(n+2\right)⋮13\)
Vì (4;13) = 1 nên n+2 chia hết cho 13
=> n=13k-2 ( \(k\in N\)*)
b) \(5n+1⋮7\Rightarrow5n+1+14⋮7\Rightarrow5n+15⋮7\Rightarrow5\left(n+3\right)⋮7\)
Vì 5 không chia hết cho 7 nên để 5(n+3) chia hết cho 7 thì n+3 chia hết cho 7
=> n = 7k-3 ( \(k\in N\)*)
c) \(25n+3⋮53\Rightarrow25n+3-53⋮53\Rightarrow25n-50⋮53\Rightarrow25\left(n-2\right)⋮53\Rightarrow n-2⋮53\)
=> n = 53k+2 ( k thuộc N*)
4n - 5 chia hết cho 13
=> 4n - 5 + 13 chia hết cho 13
=> 4n+8 chia hết cho 13
=> 2 (n+2) chia hết cho 13
VÌ 2 ko chia hết cho 13 nên n + 2 chia hết cho 13
=> n + 2 thuộc B(13)
=>n + 2 = 13k ( k thuộc N )
=>n = 13k - 2
Vậy n có dạng là 13k - 2
Các con còn lại cx làm như vậy nha chúc bn học giỏi
k mk và kb nha ><
b) \(5n+1⋮7\)
\(\Rightarrow5n+1+14⋮7\)
\(\Rightarrow5n+15⋮7\)
\(\Rightarrow5\left(n+3\right)⋮7\)
\(\Rightarrow n+3⋮7\) ( vì \(\left(5;7\right)=1\) )
\(\Rightarrow n+3\in B_{\left(7\right)}\)
\(\Rightarrow n+3=7k\) ( k \(\in\) N* )
\(\Rightarrow n=7k-3\)
vậy \(n\) có dạng là \(7k-3\)
a) n = 4 ;
b) n = 4 ;
c) ???
d) n = 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9