giải phương trình:\(\frac{x}{x-\sqrt{x^2-5x}}+\frac{1}{\sqrt{x}-\sqrt{x-5}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài bị thiếu.
ĐK x >=5.
\(pt\Leftrightarrow\frac{\sqrt{x^2}}{\sqrt{x}\left(\sqrt{x}-\sqrt{x-5}\right)}+\frac{1}{\sqrt{x}-\sqrt{x-5}}=0\)
<=> \(\frac{\sqrt{x}}{\sqrt{x}-\sqrt{x-5}}+\frac{1}{\sqrt{x}-\sqrt{x-5}}=0\)
<=> \(\frac{\sqrt{x}+1}{\sqrt{x}-\sqrt{x-5}}=0\)phương trình vô nghiệm.
1) đặt đk rùi bình phương 2 vế là ok
2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))
<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)
<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)
<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)
<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)
đến đây bình phương 2 vế rùi giải bình thường nhé
giúp vs