tìm giá trị nhỏ nhất
\(C=2x^2+9y^2-6xy-2x+2018\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+9y^2-6xy-6x-12y+2046\)
\(=\left[\left(x^2-6xy+9y^2\right)+\left(4x-12y\right)+4\right]-4+\left(x^2-10x+25\right)-25+2046\)
\(=\left[\left(x-3y\right)^2+4\left(x-3y\right)+4\right]+\left(x-5\right)^2-4-25+2046\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+2017\ge2017\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{7}{3}\\x=5\end{cases}}}\)
Vậy \(A_{min}=2017\) tại \(x=5;y=\frac{7}{3}\)
\(C=2x^2+9y^2-6xy-2x+2018\)
\(=\left(x^2-6xy+9y^2\right)+\left(x^2-2x+1\right)+2017\)
\(=\left(x-3y\right)^2+\left(x-1\right)^2+2017\)
Nhận xét :
\(\left\{{}\begin{matrix}\left(x-3y\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(x-1\right)^2\ge0\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(x-1\right)^2+2017\ge2017\)
\(\Leftrightarrow C\ge2017\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3y\right)^2=0\\\left(x-1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(C_{Min}=2017\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(D=x^2-2xy+6y^2-12x+2y+45\)
\(=\left(x^2-2xy+y^2\right)-\left(12x+12y\right)-10y+5y^2+45\)
\(=\left(x-y\right)^2-12\left(x-y\right)+36+\left(5y^2-10y+5\right)+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Nhận xét :
\(\left\{{}\begin{matrix}\left(x-y-6\right)^2\ge0\\5\left(y-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-y-6\right)+5\left(y-1\right)^2+4\ge4\)
\(\Leftrightarrow D\ge4\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
Vậy \(D_{Min}=4\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(C=\left(x^2-6xy+9y^2\right)+\left(x^2-2x+1\right)+2017=\left(x-3y\right)^2+\left(x-1\right)^2+2017\)
\(\ge0+0+2017=2017.\Rightarrow C_{min}=2017\Leftrightarrow\hept{\begin{cases}x-1=0\\x-3y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{3}\end{cases}}\)
C= (x-3y)2+(x-1)2+2017 \(\ge2017\)
Min C = 2017