\(a=\sqrt{1-2x}+\sqrt{1+2x}\)
\(\text{Tính }P=\frac{\sqrt{1-\sqrt{1-4x^2}}}{x}\text{ theo a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{\sqrt{3-\sqrt{9-4x^2}}}{x}\) sẽ hợp lý hơn, chứ biểu thức B đúng như bạn ghi thì ko rút gọn được theo a
\(a^2=6+2\sqrt{9-4x^2}\Rightarrow\sqrt{9-4x^2}=\frac{a^2-6}{2}\)
\(\Rightarrow9-4x^2=\frac{\left(a^2-6\right)^2}{4}\Rightarrow x^2=\frac{36-\left(a^2-6\right)^2}{16}=\frac{a^2\left(12-a^2\right)}{16}\)
\(\Rightarrow B=\pm\sqrt{\frac{3-\sqrt{9-4x^2}}{x^2}}=\pm\sqrt{\frac{3-\frac{a^2-6}{2}}{x^2}}=\pm\sqrt{\frac{12-a^2}{2x^2}}\)
\(\Rightarrow B=\pm\sqrt{\frac{8\left(12-a^2\right)}{a^2\left(12-a\right)^2}}=\pm\sqrt{\frac{8}{a^2}}=\pm\frac{2\sqrt{2}}{a}\)
1)
a) Ta có : \(\frac{x^2+5}{\sqrt{x^2+4}}=\frac{\left(x^2+4\right)+1}{\sqrt{x^2+4}}=\sqrt{x^2+4}+\frac{1}{\sqrt{x^2+4}}\). Đến đây áp dụng bđt \(a+\frac{1}{a}>2\)là ra nhé :)
b) Ta sẽ chứng minh bằng biến đổi tương đương :
\(\sqrt{\left(a+c\right)\left(b+d\right)}\ge\sqrt{ab}+\sqrt{cd}\)
\(\Leftrightarrow\left(a+c\right)\left(b+d\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)
\(\Leftrightarrow ab+ad+bc+cd\ge ab+cd+2\sqrt{abcd}\)
\(\Leftrightarrow ad-2\sqrt{abcd}+bc\ge0\)
\(\Leftrightarrow\left(\sqrt{ad}-\sqrt{bc}\right)^2\ge0\)(luôn đúng)
Vì bđt cuối luôn đúng nên bđt ban đầu được chứng minh.
2) Mình làm tóm tắt thôi nhé , do đề dài...
a) \(\sqrt{2x+\sqrt{4x-1}}-\sqrt{2x-\sqrt{4x-1}}\)
\(=\frac{\sqrt{\left(4x-1\right)+2\sqrt{4x-1}+1}+\sqrt{\left(4x-1\right)-2\sqrt{4x-1}+1}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{4x-1}+1\right)^2}+\sqrt{\left(\sqrt{4x-1}+1\right)^2}}{\sqrt{2}}=\frac{\left|\sqrt{4x-1}-1\right|+\left|\sqrt{4x-1}+1\right|}{\sqrt{2}}\)
b) \(\frac{x-y+3\sqrt{x}+3\sqrt{y}}{\sqrt{x}-\sqrt{y}+3}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+3\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}+3}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+3\right)}{\sqrt{x}-\sqrt{y}+3}=\sqrt{x}+\sqrt{y}\)
c) Biến đổi : \(\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\left|\sqrt{x-1}-1\right|\)
d) Biến đổi tương tự c)
e) \(\sqrt{x+\sqrt{x^2-4}}.\sqrt{x-\sqrt{x^2-4}}=\sqrt{x^2-\left(x^2-4\right)}=\sqrt{4}=2\)
Ta có:
x = \(\frac{1}{2}\)\(\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
= \(\frac{1}{2}\)\(\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{1}}\)
= \(\frac{1}{2}\)(\(\sqrt{2}\)-1)
=> 2x = \(\sqrt{2}\)-1
=> (2x)2= ( \(\sqrt{2}\)-1)2
=> 4x2= 2-2\(\sqrt{2}\)+1
=> 4x2= -2( \(\sqrt{2}\)-1)+1
=> 4x2= -4x +1 => 4x2+4x-1=0
Lại có:
A1= (\(4x^5\)+\(4x^4\)- \(x^3\)+1)19
= [ x3( 4x2+4x-1) +1]19
=1
A2=( \(\sqrt{4x^5+4x^4-5x^3+5x+3}\))3
= (\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\))3
= 23=8
A3= \(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\)
= \(\sqrt{2}\)- \(\sqrt{2}\)\(\sqrt{1-\sqrt{2}}\)
Cộng 3 số vào ta được A
\(a^2=2+2\sqrt{1-4x^2}\Rightarrow\sqrt{1-4x^2}=\frac{a^2-2}{2}\)
\(\Rightarrow x^2=\frac{4a^2-a^4}{16}\)
\(P=\pm\sqrt{\frac{1-\sqrt{1-4x^2}}{x^2}}=\pm\sqrt{\frac{1-\frac{a^2-2}{2}}{\frac{4a^2-a^4}{16}}}=\pm\sqrt{\frac{8\left(4-a^2\right)}{a^2\left(4-a^2\right)}}=\pm\frac{2\sqrt{2}}{a}\)
a=1-\(4x^2\)