K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2019

\(x^2+2y^2-2xy+2x-4y+2=0\)

\(\Rightarrow x^2-2xy+y^2+2\left(x-y\right)+1+y^2-2y+1=0\)

\(\Rightarrow\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-1\right)^2=0\)

\(\Rightarrow\left(x-y+1\right)^2+\left(y-1\right)^2=0\)

=>................

25 tháng 10 2020

\(x^2+2y^2-2xy+2x-4y+3\)

\(=x^2-2x\left(y-1\right)+\left(y-1\right)^2-\left(y-1\right)^2+2y^2-4y+3\)

\(=\left(x-y+1\right)^2-y^2+2y+1+2y^2-4y+3\)

\(=\left(x-y+1\right)^2+y^2-2y+4\)

\(=\left(x-y+1\right)^2+\left(y-1\right)^2+3>0\forall x;y\)

13 tháng 6 2018

(1)

(x+1)(x-7)+17>0

<=>x^2-6x+9+1>0

<=>(x-3)^2+1>0(dpcm)

..

(7)

-y^2+4y-4-|x+1|≤0

<=>-(y-2)^2-|x+1|≤0

sum 2 so khong duong ko the la so (+)=>dpcm

1.(x+1)(x-7)+17=(x-3)2+1>0

2.-20-(x-5)(x+3)=-34-(x-1)2<0

3.-2(x+3)-(x-2)(x+2)=-(x+1)2-1<0

4.x2+y2+2x+2y+3=(x+1)2+(y+1)2+1>0

5.2x2+2x+y2+2y+5=2(x+1/2)2+(y+1)2+2>0

6.2x2+2y2+2xy+2x+4y+6=(x+y)2+(x+1)2+(y+2)2+1>0

7.-y2+4y-4-/x+1/=-(y-2)2-/x+1/≤0

NV
6 tháng 4 2019

Áp dụng BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\):

\(VT=\sqrt{\frac{x^2+\left(2y\right)^2}{2}}+\sqrt{\frac{\left(\frac{x}{2}-y\right)^2+3\left(\frac{x}{2}+y\right)^2}{3}}\)

\(VT\ge\sqrt{\frac{\left(x+2y\right)^2}{4}}+\sqrt{\frac{3\left(\frac{x}{2}+y\right)^2}{3}}\)

\(VT\ge\left|\frac{x+2y}{2}\right|+\left|\frac{x+2y}{2}\right|=\left|x+2y\right|\ge x+2y\) (đpcm)

Dấu "=" xảy ra khi \(x=2y\ge0\)

6 tháng 4 2019

Cảm ươn nhiều ạ

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

7 tháng 12 2017

\(x^2+2y^2-2xy+2x-4y+3\)

\(=x^2+y^2+y^2-2xy+2x-2y-2y^2+1+1+1\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(2x-2y\right)+1+1\)

\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-1\right)^2+1\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y-1\right)^2+1\)

\(=\left(x-y+1\right)^2+\left(y-1\right)^2+1\)

\(\left(x-y+1\right)^2+\left(y-1\right)^2\ge0\forall x;y\)

Nên \(\left(x-y+1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)

Vậy \(x^2+2y^2-2xy+2x-4y+3>0\forall x;y\)

7 tháng 12 2017
Ta có: x2+2y2-2xy+2x-4y+3 = (x2 +y2 +1 - 2xy + 2x - 2y) + (y2-2y+1) +1 = (x-y+1)2 + (y-1)2 + 1 Vì (x-y+1)2 ≥ 0 với mọi x,y ∈ R (y-1)2 ≥ 0 với mọi y ∈ R ⇔ (x-y+1)2 + (y-1)2 ≥ 0 với mọi x,y ∈R ⇔ (x-y+1)2 + (y-1)2 +1 ≥ 1 > 0 với mọi x,y ∈R Vậy x2+2y2-2xy+2x-4y+3 > 0 với mọi x,y ∈ R.