Giải giúp mình 2 bài này với !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi
I:
Câu 1: A
Câu 2: C
Câu 3: B
Câu 4: A
II:
5: S
6:S
7:Đ
8: Đ
\(3,\\ a,P=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\left(x>0;x\ne1;x\ne4\right)\\ P=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-1-x+4}\\ P=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\\ b,P=\dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\Leftrightarrow4\sqrt{x}-8=3\sqrt{x}\\ \Leftrightarrow\sqrt{x}=8\Leftrightarrow x=64\)
\(c,x=4+2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\\ \Leftrightarrow P=\dfrac{\sqrt{3}+1-2}{3\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{\left(\sqrt{3}-1\right)\left(3\sqrt{3}-3\right)}{18}\\ P=\dfrac{12-6\sqrt{3}}{18}=\dfrac{2-\sqrt{3}}{3}\)
\(d,P\in Z\Leftrightarrow3P\in Z\Leftrightarrow\dfrac{3\sqrt{x}-6}{3\sqrt{x}}\in Z\Leftrightarrow1-\dfrac{6}{3\sqrt{x}}\in Z\\ \Leftrightarrow6⋮3\sqrt{x}\Leftrightarrow3\sqrt{x}\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;2;3;6\right\}\left(\sqrt{x}\ge0\right)\\ \Leftrightarrow x\in\left\{1;4;9;36\right\}\)
\(4,\\ A=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\\ A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\\ A=\left|x+1\right|+\left|x-1\right|\\ A=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=\left|2\right|=2\)
Dấu \("="\Leftrightarrow x=1\)
Bài 2:
Sửa đề: \(y=f\left(x\right)=\left\{{}\begin{matrix}\dfrac{2x^2+3x-5}{x-1}nếux\ne1\\2a+1nếux=1\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{2x^2+3x-5}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+5\right)\left(x-1\right)}{x-1}=\lim\limits_{x\rightarrow1}2x+5=2+5=7\)
f(1)=2a+1
Để hàm số liên tục khi x=1 thì \(f\left(1\right)=\lim\limits_{x\rightarrow1}f\left(x\right)\)
=>2a+1=7
=>2a=6
=>a=3
2:
1+cot^2a=1/sin^2a
=>1/sin^2a=1681/81
=>sin^2a=81/1681
=>sin a=9/41
=>cosa=40/41
tan a=1:40/9=9/40