Chứng minh với góc nhọn a : Cotg2a - cotg2a. cos2a= cos2a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+tan^2a\right)\left(1-sin^2a\right)-\left(1+cot^2a\right)\left(1-cos^2a\right)\)
\(=\left(1+\dfrac{sin^2a}{cos^2a}\right).cos^2a-\left(1+\dfrac{cos^2a}{sin^2a}\right).sin^2a\)
\(=cos^2a+sin^2a-sin^2a-cos^2a=\)\(0\)
Vậy B=0
\(cos2a=cos^2a-sin^2a\)
\(=cos^2a-\left(1-cos^2a\right)\)
\(=2\cdot cos^2a-1\)
\(cos2a=cos^2a-sin^2a\)
\(=1-sin^2a-sin^2a\)
\(=1-2\cdot sin^2a\)
\(VT=\cos^2a-2.\dfrac{1}{2}\left[\cos\left(a+b\right)+\cos\left(a-b\right)\right].\cos\left(a+b\right)+\cos^2\left(a+b\right)=\)
\(=\cos^2a-\cos^2\left(a+b\right)-\cos\left(a+b\right)\cos\left(a-b\right)+\cos^2\left(a+b\right)=\)
\(=\cos^2a-\dfrac{1}{2}\left(\cos2a+\cos2b\right)=\)
\(=\dfrac{2\cos^2a-\cos^2a+\sin^2a-1+2\sin^2b}{2}=\)
\(=\dfrac{\left(\cos^2a+\sin^2a\right)-1+2\sin^2b}{2}=\sin^2b=VP\)
cos2a - cos (a+b) (2 cosa . cosb - cos (a+b) = sin2b
Cos2a - ( cos a.cosb- sina .sinb)( 2 cosa .cosb - ( cosa .cosb - sina .sinb) = sin2b
cos2a - (cosa.cosb - sina.sinb) (cosa.cosb + sina .sinb) = sin2b
cos2a - ( cos2a . cos2b - sin2a .sin2b = sin2b ) .
1 - sin2a - ( 1 - sin2a ) ( 1 - sin2b) - sin2a .sin2b = sin2b
1 - sin2a - ( 1- sin2b - sin2a + sin2a .sin2b - sin2 a .sin2b = sin2b
1 - sin2a -1 + sin2 b + sin2a = sin2b
Sin2b = Sin2b điều đã CM
\(1+4\left(cosa+cos3a\right)+6cos2a+2cos^22a-1\)
\(=8cos2a.cosa+6cos2a+2cos^22a\)
\(=2cos2a\left(cos2a+4cosa+3\right)\)
\(=2cos2a\left(2cos^2a+4cosa+2\right)\)
\(=4cos2a\left(\left(2cos^2\frac{a}{2}-1\right)^2+2\left(2cos^2\frac{a}{2}-1\right)+1\right)\)
\(=4cos2a\left(4cos^4\frac{a}{2}-4cos^2\frac{a}{2}+1+4cos^2\frac{a}{2}-2+1\right)\)
\(=16cos2a.cos^4\frac{a}{2}\)
cotg2a-cotg2a.cos2a= cotg2a(1-cos2a) =\(\frac{cos^2a}{sin^2a}sin^2a=cos^2a\)