Tìm gt của x để bt sau dương
C=(1/2-x)(1/3-x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{x^2-2}{5x}< 0\Leftrightarrow\)\(x^2-2\)và 5x trái dấu
\(TH1:\hept{\begin{cases}x^2-2>0\\5x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2>2\\x< 0\end{cases}}\Leftrightarrow x< 2\)
\(TH2:\hept{\begin{cases}x^2-2< 0\\5x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2< 2\\x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-2< x< 2\\x>0\end{cases}}\Leftrightarrow0< x< 2\)
\(E=\frac{x-2}{x-6}< 0\Leftrightarrow\hept{\begin{cases}x-2>0\\x-6< 0\end{cases}}\Leftrightarrow2< x< 6\)
\(F=\frac{x^2-1}{x^2}< 0\Leftrightarrow x^2-1< 0\Leftrightarrow-1< x< 1\)
5)
để \(\frac{5x-3}{x+1}\)là số nguyên
\(5x-3⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow5\left(x+1\right)⋮x+1\)
\(5x-3-\left(5x-5\right)⋮x+1\)
\(-2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy \(x\in\left\{0;-2;1;-3\right\}\)
a) Áp dụng định lý Bézout ( Bê-du ) , dư của \(f\left(x\right)=x^3+x^2-x+a\)cho x + 2 = x - (-2) là \(f\left(-2\right)\)
Để f(x) chia hết cho x + 2 thì f(-2)=0
\(\Rightarrow\left(-2\right)^3+\left(-2\right)^2-\left(-2\right)+a=0\)
\(-8+4+2+a=0\)
\(a-2=0\)
\(a=2\)
Vậy ...
c) \(\frac{n^3+n^2-n+5}{n+2}=\frac{n^3+2n^2-n^2-2n+n+2+3}{n+2}\)nguyên để \(n^3+n^2-n+5⋮n+2\)
\(\Rightarrow\frac{n^2\left(n+2\right)-n\left(n+2\right)+\left(n+2\right)+3}{n+2}\in Z\)
\(\Rightarrow n^2-n+1+\frac{3}{n+2}\in Z\)
\(n^2,n,1\in Z\Rightarrow\frac{3}{n+2}\in Z\)
\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-1;1\right\}\)
Vậy ...
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
\(\left(\frac{1}{2}-x\right)\left(\frac{1}{3}-x\right)>0\)
\(\Leftrightarrow\frac{1}{2}-x\)và \(\frac{1}{3}-x\)cùng dấu
Mà \(\frac{1}{2}-x>\frac{1}{3}-x\)nên \(\orbr{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x< \frac{1}{3}\end{cases}}\)