K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2021

Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)

CMTT: \(ab+bc>b^2;ab+ac>a^2\)

Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)

 

1 tháng 6 2017

Xét tam thức f(x) = b2x2 - (b2 + c2 - a2)x + c2 có:

Δ = (b2 + c2 - a2)2 - 4b2c2

    = (b2 + c2 - a2 - 2bc)(b2 + c2 - a2 + 2bc)

    = [(b - c)2 - a2][(b + c)2 - a2]

    = (b – c – a)(b – c + a)(b + c + a)(b + c – a).

Do a, b, c là 3 cạnh của tam giác nên theo bất đẳng thức tam giác ta có:

    b < c + a ⇒ b – c – a < 0

    c < a + b ⇒ b – c + a > 0

    a < b + c ⇒ b + c – a > 0

    a, b, c > 0 ⇒ a + b + c > 0

⇒ Δ < 0 ⇒ f(x) cùng dấu với b2 ∀x hay f(x) > 0 ∀x (đpcm).

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Đề sai với $b=0,1; c=0,2; a=0,25$

18 tháng 11 2018

Phương trình b2x2 – (b2 + c2 – a2)x + c2 = 0

Δ = (b2 + c2 – a2) – b2c2 = (b2 + c2 – a2 + 2bc)(b2 + c2 – a2 – 2bc)

= [(b + c)2 – a2] [(b – c)2 – a2]

= (b + c + a)(b + c – a)(b – c – a)(b – c + a)

Mà a, b, c là ba cạnh của tam giác nên

a + b + c > 0 b + c − a > 0 b − c − a < 0 b + a − c > 0

Nên Δ < 0 với mọi a, b, c

Hay phương trình luôn vô nghiệm với mọi a, b, c

Đáp án cần chọn là: D

8 tháng 7 2017

a) Vì a, b, c là độ dài 3 cạnh của một tam giác

⇒ a + c > b và a + b > c (Bất đẳng thức tam giác)

⇒ a + c – b > 0 và a + b – c > 0

Ta có: (b – c)2 < a2

⇔ a2 – (b – c)2 > 0

⇔ (a – (b – c))(a + (b – c)) > 0

⇔ (a – b + c).(a + b – c) > 0 (Luôn đúng vì a + c – b > 0 và a + b – c > 0).

Vậy ta có (b – c)2 < a2 (1) (đpcm)

b) Chứng minh tương tự phần a) ta có :

( a – b)2 < c2 (2)

(c – a)2 < b2 (3)

Cộng ba bất đẳng thức (1), (2), (3) ta có:

(b – c)2 + (c – a)2 + (a – b)2 < a2 + b2 + c2

⇒ b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2 < a2 + b2 + c2

⇒ 2(a2 + b2 + c2) – 2(ab + bc + ca) < a2 + b2 + c2

⇒ a2 + b2 + c2 < 2(ab + bc + ca) (đpcm).

19 tháng 7 2018

a^2 -b^2 -c^2 +2bc = a^2 -(b^2 +c^2 -2bc)

                            = a^2 -(b-c)^2

                            = (a-b+c)(a+b-c)

Theo bất đẳng thức tam giác, ta có: 

a+c>b và a+b>c

Suy ra: a-b+c >0 và a+b-c >0

Do đó: (a-b+c)(a+b-c) >0

Vậy a^2 - b^2 -c^2 + 2bc >0

Chúc bạn học tốt.

27 tháng 9 2017

 a; b; c là độ dài 3 cạnh một tam giác nên \(a>b-c\) (bđt tam giác)

\(\Leftrightarrow a^2>\left(b-c\right)^2\)

\(\Leftrightarrow a^2-\left(b-c\right)^2>0\)

\(\Leftrightarrow a^2-\left(b^2-2bc+c^2\right)>0\)

\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)(đpcm)

27 tháng 9 2017

Tui đang lười

Làm theo cái này

Câu hỏi của Đoàn Thanh Kim Kim - Toán lớp 7 - Học toán với OnlineMath

Vào câu hỏi tương tự cũng được. Ohe?