K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2019

Xét 2 tam giác ABC và A'B'C' bất kì.

Có: \(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\left(\overrightarrow{AG}+\overrightarrow{GA'}\right)+\left(\overrightarrow{BG}+\overrightarrow{GB'}\right)+\left(\overrightarrow{CG}+\overrightarrow{GC'}\right)\)

\(=\overrightarrow{0}+\left(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}\right)=3\overrightarrow{GG'}\)

Áp dụng có:

\(\overrightarrow{OO}+\overrightarrow{AC}+\overrightarrow{BD}=3\overrightarrow{GG'}\)

\(\Leftrightarrow\overrightarrow{GG'}=\frac{1}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{BD}\)

#Walker

23 tháng 10 2017

 

2 tháng 4 2017

Chọn D.

+ Vì G’ là trọng tâm của tam giác OCD nên . (1)

+ Vì  G  là trọng tâm của tam giác OAB  nên:  (2)

+ Từ (1) và (2) suy ra:

12 tháng 1 2021

undefined

undefined

Lười đánh máy nên luyện chữ :))

18 tháng 3 2016

A B Co C1 O A1 Ao C B1 Bo H

Đặt \(\overrightarrow{u}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-\overrightarrow{OH}\)

Ta sẽ chứng minh \(\overrightarrow{u}=\overrightarrow{O}\)

Gọi A1, B1, C1 theo thứ tự là hình chiếu của A, B, C ( cũng là hình chiếu của H) trên các đường thẳng BC, CA, AB và gọi Ao, Bo, Co theo thứ tự là trung điểm BC, CA, AB (như hình vẽ)

Chiếu vectơ \(\overrightarrow{u}\)  lên đường thẳng BC theo phương của \(\overrightarrow{AH}\) ta được 

\(\overrightarrow{u_a}=\overrightarrow{A_oA_1}+\overrightarrow{A_oB}+\overrightarrow{A_oC}-\overrightarrow{A_oA_1}=\overrightarrow{O}\)

Suy ra  \(\overrightarrow{u}\)  cùng phương với \(\overrightarrow{AH}\)  (1)

Tương tự như vậy,

ta cũng có  \(\overrightarrow{u}\)   cùng phương với \(\overrightarrow{BH,}\overrightarrow{CH}\) (2)

Từ (1) và (2) và do các vectơ \(\overrightarrow{AH,}\)\(\overrightarrow{BH},\overrightarrow{CH}\) đôi một không cùng phương suy ra \(\overrightarrow{u}=\overrightarrow{O}\)

Vậy \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\)

Nhưng \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG}\) nên \(\overrightarrow{OH}=3\overrightarrow{OG}\)

Do đó G, H, O thẳng hàng

  
NV
17 tháng 4 2022

\(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NC}+\overrightarrow{BM}+\overrightarrow{MN}+\overrightarrow{ND}\)

\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{BM}\right)+\left(\overrightarrow{NC}+\overrightarrow{ND}\right)\)

\(=2\overrightarrow{MN}\)

\(\Rightarrow\) A đúng nên D sai

17 tháng 4 2022

C.