\(^2\sqrt[\log_{\ge}]{}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(A=3log_{2^2}\sqrt{a}-log_{2^{-1}}a^2+2log_{a^{\dfrac{1}{2}}}a\)
\(=3.\dfrac{1}{2}.\dfrac{1}{2}log_2a-\left(-1\right).2.log_2a+2.2.log_2a\)
\(=\dfrac{27}{4}log_2a\)
2.
\(log_{12}36=\dfrac{log_236}{log_212}=\dfrac{log_2\left(3^2.2^2\right)}{log_2\left(3.2^2\right)}=\dfrac{log_23^2+log_22^2}{log_23+log_22^2}\)
\(=\dfrac{2.log_23+2}{log_23+2}=\dfrac{2a+2}{a+2}\)
cho e hỏi tại sao \(3\log_{2^2}\sqrt{a}\) lại bằng \(3.\dfrac{1}{2}.\dfrac{1}{2}\log_2a\) và \(2\log_{a^{\dfrac{1}{2}}}a=2.2.\log_2a\)
\(log_{\sqrt{2}}\sqrt{2}=1;log_77=1\)
\(log_{10}1=0;log_91=0\)
\(3^{log_35}=5;7^{log_7\sqrt{2}}=\sqrt{2}\)
\(log_88^{-10}=-10;log_55^{\sqrt{3}}=\sqrt{3}\)
\(\left[log_24x\right]^2-log_{\sqrt{2}}2x=5\)
=>\(\left[log_2\left(2\cdot2x\right)\right]^2-log_{2^{\dfrac{1}{2}}}2x=5\)
=>\(\left[1+log_22x\right]^2-1:\dfrac{1}{2}\cdot log_22x=5\)
=>\(\left(log_22x\right)^2+2\cdot log_22x+1-2\cdot log_22x=5\)
=>\(\left(log_22x\right)^2=4\)
=>\(\left[{}\begin{matrix}log_22x=2\\log_22x=-2\left(loại\right)\end{matrix}\right.\Leftrightarrow log_22x=2\)
=>\(2x=2^2=4\)
=>x=2