K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

Lâu ko động đến vecto :)

Tứ giác ABCD chứ nhỉ? Thôi ko sao tôi ad tứ giác ABCD cho thuận, còn nếu là ABDC thì cậu tự đổi lại

Gọi I là TĐ của AB, K là TĐ của CD

\(\Rightarrow\overrightarrow{GI}+\overrightarrow{IA}+\overrightarrow{GI}+\overrightarrow{IB}+\overrightarrow{GI}+\overrightarrow{IC}+\overrightarrow{GI}+\overrightarrow{ID}=\overrightarrow{0}\)

\(\Leftrightarrow4\overrightarrow{GI}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\left(\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\right)\) vì I là TĐ AB

Có K là TĐ CD=> \(\overrightarrow{IC}+\overrightarrow{ID}=2\overrightarrow{IK}\)

\(\Rightarrow4\overrightarrow{GI}+2\overrightarrow{IK}=\overrightarrow{0}\Leftrightarrow2\overrightarrow{GI}=\overrightarrow{KI}\)

Vậy lấy G sao cho \(\left\{{}\begin{matrix}2\overrightarrow{GI}\uparrow\uparrow\overrightarrow{KI}\\KI=2GI\end{matrix}\right.\)

Đoán chắc G là trung điểm IK :D

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có:

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0  \Leftrightarrow \left( {\overrightarrow {GI}  + \overrightarrow {IA} } \right) + \left( {\overrightarrow {GI}  + \overrightarrow {IB} } \right) + \left( {\overrightarrow {GJ}  + \overrightarrow {JC} } \right) + \left( {\overrightarrow {GJ}  + \overrightarrow {JD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {GI}  + \left( {\overrightarrow {IA}  + \overrightarrow {IB} } \right) + 2\overrightarrow {GJ}  + \left( {\overrightarrow {JC}  + \overrightarrow {JD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {GI}  + 2\overrightarrow {GJ}  = \overrightarrow 0  \Leftrightarrow 2\left( {\overrightarrow {GI}  + \overrightarrow {GJ} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {GI}  + \overrightarrow {GJ}  = \overrightarrow 0  \Rightarrow \)G là trung điểm của đoạn thẳng IJ

Vậy I, G, J thẳng hàng

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

7 tháng 10 2020

Ta có: \(\overrightarrow{GB}=\overrightarrow{GA}+\overrightarrow{AB}\)

\(\overrightarrow{GC}=\overrightarrow{GA}+\overrightarrow{AC}\)

\(\overrightarrow{GD}=\overrightarrow{GA}+\overrightarrow{AD}\)

Suy ra: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=4\overrightarrow{GA}+\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=0\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có \(AC = AB\sqrt 2  = a\sqrt 2 \)

+) \(\overrightarrow {KA}  + \overrightarrow {KC}  = \overrightarrow 0 \),

Suy ra K là trung điểm AC \( \Rightarrow AK = \frac{1}{2}.a\sqrt 2  = \frac{{a\sqrt 2 }}{2}\)

+) \(\overrightarrow {HA}  + \overrightarrow {HD}  + \overrightarrow {HC}  = \overrightarrow 0 \), suy ra H là trọng tâm của tam giác ADC

\(\Rightarrow DH = \frac{2}{3}DK = \frac{1}{3}DB\) (1)

+) \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \), suy ra G là trọng tâm của tam giác ABC

\(\Rightarrow BG = \frac{2}{3}BK = \frac{1}{3}BD\) (2)

\((1,2) \Rightarrow HG = \frac{1}{3}BD=\frac{{a\sqrt 2 }}{3}\)

Mà \(KG = KH = \frac{1}{2}HG= \frac{{a\sqrt 2 }}{6}\) (2)

\(\Rightarrow  AG = \sqrt {A{K^2} + G{K^2}}  = \sqrt {{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{6}} \right)}^2}}  = \frac{{a\sqrt 5 }}{3}\)

\( \Rightarrow \left| {\overrightarrow {AG} } \right| = \frac{{a\sqrt 5 }}{3}\)

Vậy \(\left|\overrightarrow {KA}\right| =\frac{{a\sqrt 2 }}{2} ,\left|\overrightarrow {GH}\right|=\frac{{a\sqrt 2 }}{3} ,\left|\overrightarrow {AG}\right|=\frac{{a\sqrt 5 }}{3} \).

NV
17 tháng 4 2022

\(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NC}+\overrightarrow{BM}+\overrightarrow{MN}+\overrightarrow{ND}\)

\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{BM}\right)+\left(\overrightarrow{NC}+\overrightarrow{ND}\right)\)

\(=2\overrightarrow{MN}\)

\(\Rightarrow\) A đúng nên D sai

17 tháng 4 2022

C. 

NV
3 tháng 12 2021

\(T=\overrightarrow{GA}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)+\overrightarrow{GB}.\overrightarrow{CA}+\overrightarrow{GC}.\overrightarrow{AB}\)

\(=\overrightarrow{AB}\left(\overrightarrow{GC}-\overrightarrow{GA}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}-\overrightarrow{GB}\right)\)

\(=\overrightarrow{AB}\left(\overrightarrow{GC}+\overrightarrow{AG}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}+\overrightarrow{BG}\right)\)

\(=\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{AC}.\overrightarrow{BA}\)

\(=0\)