Cho x+y=2 chứng minh rằng : \(x^5+y^5\ge2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=1+a\) \(\Rightarrow y=1-a\)
\(\Rightarrow x^5+y^5=\left(1+a\right)^5+\left(1-a\right)^5\)
\(=10a^4+20a^2+2\ge2\) ( vì \(a^4>0;a^2>0\) với mọi a )
\(\Rightarrow x^5+y^5\ge2\left(ĐPCM\right)\)
Dấu = xảy ra khi \(a=0\Leftrightarrow x=y=1\)
1)đề thiếu
2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)
\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:
\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)
Đpcm
3)\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Đpcm
1/ Sửa đề: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\) \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)
Với mọi x, y, z ta luôn có: \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\) \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\) \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)
\(\Rightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Do đó dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\) \(\Leftrightarrow\) x = y = z
3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh
\(a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\) \(a^2+b^2+2ab-4ab\ge0\) \(\Leftrightarrow\) \(a^2-2ab+b^2\ge0\) \(\Leftrightarrow\) \(\left(a-b\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi a = b
2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:
\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
a) Với mọi số thực x ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\)
Tương tự \(y^2+1\ge2y,z^2+1\ge2z\)
Cộng theo vế các bất phương trình trên ta có0:
\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)
\(\Leftrightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
Dấu "=" xảy ra khi và chỉ khi x=y=z=1
b) \(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2}{x-y}\)
Vì x>y => x-y >0. Áp dụng bất đẳng thức cosi cho x-y>0 và 2/(x-y) >0. Ta có:
\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\)
\(x>y\),\(xy=1\)
Ta có:
\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)
Áp dụng BĐT Cauchy ta có:
\(x-y+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\)
\(\Rightarrow\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)(đpcm)
Chúc bạn học tốt
\(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+\left(\frac{1+xy}{x+y}\right)^2\ge2\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(xy+1\right)+\left(\frac{1+xy}{x+y}\right)^2\ge0\)
\(\Leftrightarrow\left(x+y\right)^2-\frac{2\left(x+y\right)\left(xy+1\right)}{\left(x+y\right)}+\left(\frac{1+xy}{x+y}\right)^2\ge0\)
\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2\ge0\) (đúng)
Vậy ...
Ta có : \(x>y\Rightarrow x-y>0\)
\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=x-y+\frac{2}{x-y}\)
Áp dụng BĐT Cô - si ta được :
\(x-y+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}\)
\(\Leftrightarrow\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
Chúc bạn học tốt !!!
Ta có: \(2\left(a^5+b^5\right)=\left(a+b\right)\left(a^5+b^5\right)\ge\left(a^3+b^3\right)^2\)
\(\Rightarrow a^5+b^5\ge\frac{\left(a^3+b^3\right)^2}{2}\)
Mà \(2\left(a^3+b^3\right)=\left(a+b\right)\left(a^3+b^3\right)\ge\left(a^2+b^2\right)^2\)
\(\Rightarrow a^5+b^5\ge\frac{\left(\frac{\left(a^2+b^2\right)^2}{2}\right)^2}{2}=\frac{\left(a^2+b^2\right)^4}{8}\)
\(\ge\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^4}{8}=\frac{16}{8}=2\left(đpcm\right)\)