K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Gọi 3 số tự nhiên liên tiếp là x,x+1,x+2(xN)x,x+1,x+2(x∈N)

- Nếu x=3kx=3k ( thỏa mãn ). Nếu x=3k+1x=3k+1 thì x+2=3k+1+2=(3k+3)3x+2=3k+1+2=(3k+3)⋮3

- Nếu x=3k+2x=3k+2 thì x+1=3k+1+2=(3k+3)3x+1=3k+1+2=(3k+3)⋮3

Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.

b) Nhận thấy 17n,17n+1,17n+217n,17n+1,17n+2 là 3 số tự nhiên liên tiếp. Mà 17n17n không chia hết cho 3, nên trong 2 số còn lại 1 số phải 3⋮3

Do vậy: A=(17n

6 tháng 2 2021

Tự làm hay cop bạn ?

4 tháng 7 2016
A = 17n + 111 ... 1 
A = 17n+n-(111..1-n)
A = 18n-(111..11-n) 
_ Vì 111..11 và n đều có số dư bằng nhau nên 111..11-n chia hết cho 9
=> 17n+111..11 chia hết cho 9 .
036.gif
 
 
4 tháng 7 2016

17n+n-(111..1-n)=18n-(111..11-n) 
vì 111..11 và n đều có số dư bằng nhau nên 
111..11-n chia hết cho 9=> 17n+111..11 chia hết cho 9

Trần Long Tăng

Ta có :

\(n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n^2-1\right)+12n\)

\(=\left(n-1\right)\left(n-1\right)n+12n\)

Vì \(n-1\text{ };\text{ }n\text{ };\text{ }n+1\)là tích 3 số nguyên liên tiếp nên : \(n\left(n-1\right)\left(n+1\right)\) chia hết cho 6 .

Mà 12n chia hết cho 6 .

\(\Rightarrow n^3+11n\)chia hết cho 6 .

20 tháng 9 2018

Cho a,b,c khác 0 và a+b+c=0.Tính giá trị biểu thức

Q=1/a^2+b^2-c^2 + 1/b^2+c^2-a^2 +1/a^2+c^2-b^2

20 tháng 12 2017

17n^2+1 chia hết cho 6 hay 17n^2+1 chẵn => 17n^2 lẻ => n^2 lẻ => n lẻ => n ko chia hết cho 2

Mà 2 nguyên tố => (n,2) = 1

17n^2+1 chia hết cho 6 => 17n^2+1 chia hết cho 3 => 17n^2 ko chia hết cho 3 => n^2 ko chia hết cho 3 ( vì 17 và 3 là 2 số nguyên tố cùng nhau) => n ko chia hết cho 3

Mà 3 nguyên tố => (n,3) = 1

=> ĐPCM

k mk nha

30 tháng 11 2015

Giả sử n = 1 , ta có:

A= 13 - 1.17

 = 1 - 17 = -16

Không chia hết cho 6 

24 tháng 12 2020

sai

ví dụ n>2

giả sử n=3

=>33-17.3=-24 chia hết cho 6

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)


b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

18 tháng 3 2017

17n+11...1(n chữ số 1)=18n-n+111..1(n chữ số 1)=18n+(111...1 - n) chia hết cho 9

28 tháng 2 2016

11....11 có tổng các chữ số là n

Tổng các chữ số của A là n + 17n = 18n chia hết cho 9 

Vậy A chia hết cho 9