K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2015

kẻ đường cao BH

xét tứ giác ABHD có góc A=góc D=góc H=90 độ

=> ABHD là hình chữ nhật

=> S ABHD=AB.AD=4.3=12 cm vuông

xét tam giác vuông BHC có tanC=BH/HC =>HC=BH/tanC=3/tan\(40^0\)=3.6 cm

=> S BHC=1/2.BH. HC=1/2.3.3,6=5,4 cm vuông

=> S ABCD= S ABHC+S BHC=12+5,4=17,4 cm vuông

29 tháng 9

vẽ hình họ mình vs

22 tháng 7 2015

tớ giải bài kia rồi đó nếu co sai đừng chửi mjk nha

kẻ đường cao BH

xét tứ giác ABHD có góc A=góc D=góc H=90 độ

=> ABHD là hình chữ nhật

=> S ABHD=AB.AD=4.3=12 cm vuông

xét tam giác vuông BHC có tanC=BH/HC =>HC=BH/tanC=3/tan400=3.6 cm

=> S BHC=1/2.BH. HC=1/2.3.3,6=5,4 cm vuông

=> S ABCD= S ABHC+S BHC=12+5,4=17,4 cm vuông

24 tháng 7 2015

Tứ giác ABCD có góc A= góc D = 90 độ nên ABCD là hình thang vuông. Từ B kẻ BH vuông góc với CD. Ta có BH= AD =3 cm.

Xét tam giác vuông BHC có góc C=40 độ nên tan 40 = BH/HC . suy ra HC = BH/tan40 = 3/ tan 40

Ta lại có AB= DH  =4 cm nên CD = DH+HC  4+ 3/ tan 40

Vậy diện tích tứ giác ABCD = (AB+CD).BH/2 

NV
10 tháng 9 2021

1.

\(A+B+C=180^0\Rightarrow A=180^0-\left(B+C\right)=70^0\)

Kẻ đường cao BD

Trong tam giác vuông ABD:

\(cotA=\dfrac{AD}{BD}\Rightarrow AD=BD.cotA\)

Trong tam giác vuông BCD:

\(cotC=\dfrac{CD}{BD}\Rightarrow CD=BD.cotC\)

\(\Rightarrow AD+CD=BD.cotA+BD.cotC\)

\(\Rightarrow AC=BD.\left(cotA+cotC\right)\)

\(\Rightarrow BD=\dfrac{AC}{cotA+cotC}\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}BD.AC=\dfrac{1}{2}.\dfrac{AC^2}{cotA+cotC}=\dfrac{35^2}{2\left(cot70^0+cot50^0\right)}\approx509,1\left(cm^2\right)\)

NV
10 tháng 9 2021

Hình vẽ bài 1:

undefined