so sánh:
|-2016/2017| và (2017/-2016)2001
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=20002016+20002017=20002016(1+2000)=20002016x2001<20012016x2001=20012017=B
Vây A < B
Ta có : A = 20002016 + 20002017
= 20002016.(1 + 2000)
= 20002016.2001
< 20012016.2001
= 20012017 = B
=> A < B
Vậy A < B
B=20002017+2017 ,A=20002016+20002017
Mà 20002016>2017
=>A>B
Ta có:\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì \(\hept{\begin{cases}\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\\\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\\\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\end{cases}}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow P>Q\)
Vậy P > Q
A=2015/2016+2016/2017+2017/2018>2015/2018+2016/2018+2017/2018
=6048/2018>1
B=2015+2016+2017/2016+2017+2018=6048/6051<1
=>A>B
Có: B = 2015 + 2016 + 2017/2016 + 2017 + 2018
B= 2015 / (2015 + 2016+2017) + 2016/(2016+2017+2018) + 2017/(2016 + 2017 + 2018)
vì 2015/2016 > 2015/(2016 + 2017+2018) ; 2016/2017>2016/(2016+2017+2018) ; 2017/2018 > 2017/(2016+2017+2018)
=> A>B
\(\text{Ta có}:\left|-\frac{2016}{2017}\right|>0\)
\(\left(\frac{2017}{-2016}\right)^{2001}< 0\left(\text{số mũ lẻ}\right)\)
\(\text{Do đó }\)\(\left|-\frac{2016}{2017}\right|>\left(\frac{2017}{-2016}\right)^{2001}\)
\(\text{Vậy}\)\(\left|-\frac{2016}{2017}\right|>\left(\frac{2017}{-2016}\right)^{2001}\)
Ta có : \(|\frac{-2016}{2017}|>0>\left(\frac{2017}{-2016}\right)^{2001}\)
\(\Rightarrow|\frac{-2016}{2017}|>\left(\frac{2017}{-2016}\right)^{2001}\)