Tìm x:
a) ( 9-x ) 3 = 216
b) 2x+2-2x=96
Giúp mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(2x-5\right)^3=216\)
\(\Leftrightarrow2x-5=6\)
\(\Leftrightarrow2x=11\)
hay \(x=\dfrac{11}{2}\)
b) Ta có: \(2x-3⋮x+4\)
\(\Leftrightarrow-11⋮x+4\)
\(\Leftrightarrow x+4\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{-3;-5;7;-15\right\}\)
Alo, sugeni two wai phem. Si ga no, you woo be the me that nas te, ai gi da
\(a,\sqrt{9x^2}=2x+1\\ \Leftrightarrow\left[{}\begin{matrix}3x=2x+1,\forall x\ge0\\-3x=2x+1,\forall x< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1,\forall x\ge0\left(N\right)\\x=-1,\forall x< 0\left(N\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-1,\forall x+3\ge0\\x+3=1-3x,\forall x+3< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2,\forall x\ge-3\left(N\right)\\x=-\dfrac{1}{2},\forall x< -3\left(L\right)\end{matrix}\right.\Leftrightarrow x=2\)
\(c,\sqrt{x^2-2x+4}=2x-3\left(x\in R\right)\\ \Leftrightarrow x^2-2x+4=\left(2x-3\right)^2\\ \Leftrightarrow x^2-2x+4=4x^2-12x+9\\ \Leftrightarrow3x^2-10x+5=0\\ \Delta=100-4\cdot3\cdot5=40\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10-\sqrt{40}}{6}\\x=\dfrac{10+\sqrt{40}}{6}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{10}}{3}\\x=\dfrac{5+\sqrt{10}}{3}\end{matrix}\right.\)
\(a.\sqrt{9x^2}=2x+1\)
<=> \(\sqrt{9}x=2x+1\)
<=> 3x = 2x + 1
<=> 3x - 2x = 1
<=> x = 1
\(a,\Leftrightarrow\left(x-2\right)\left(5x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{5}\end{matrix}\right.\\ b,\Leftrightarrow2x^2+2x-x^2+4x-4-6=0\\ \Leftrightarrow x^2+6x-10=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{19}\\x=-3-\sqrt{19}\end{matrix}\right.\\ c,\Leftrightarrow2x^2-2x+9x-9=0\\ \Leftrightarrow\left(2x+9\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{2}\\x=1\end{matrix}\right.\)
a) Ta có: \(\left(2x-3\right)-\left(x-5\right)=\left(x+2\right)-\left(x-1\right)\)
\(\Leftrightarrow2x-3-x+5=x+2-x+1\)
\(\Leftrightarrow x+2=3\)
hay x=1
Vậy: x=1
b) Ta có: \(2\left(x-1\right)-5\left(x+2\right)=-10\)
\(\Leftrightarrow2x-2-5x-10=-10\)
\(\Leftrightarrow-3x=-10+10+2=2\)
hay \(x=-\dfrac{2}{3}\)
Vậy: \(x=-\dfrac{2}{3}\)
a, (2x - 3) - (x - 5) = (x + 2) - (x - 1)
2x - 3 - x + 5 = x + 2 - x + 1
(2x - x) + (-3 + 5) = (x - x) + (2 + 1)
x + 2 = 3
x = 1
b: \(\dfrac{5}{7}-\dfrac{2}{3}\cdot x=\dfrac{4}{5}\)
=>\(\dfrac{2}{3}x=\dfrac{5}{7}-\dfrac{4}{5}=\dfrac{25-28}{35}=\dfrac{-3}{35}\)
=>\(x=-\dfrac{3}{35}:\dfrac{2}{3}=\dfrac{-3}{35}\cdot\dfrac{3}{2}=-\dfrac{9}{70}\)
c: \(\dfrac{1}{2}x+\dfrac{3}{5}x=-\dfrac{2}{3}\)
=>\(x\left(\dfrac{1}{2}+\dfrac{3}{5}\right)=-\dfrac{2}{3}\)
=>\(x\cdot\dfrac{5+6}{10}=\dfrac{-2}{3}\)
=>\(x\cdot\dfrac{11}{10}=-\dfrac{2}{3}\)
=>\(x=-\dfrac{2}{3}:\dfrac{11}{10}=-\dfrac{2}{3}\cdot\dfrac{10}{11}=\dfrac{-20}{33}\)
d: \(\dfrac{4}{7}\cdot x-x=-\dfrac{9}{14}\)
=>\(\dfrac{-3}{7}\cdot x=\dfrac{-9}{14}\)
=>\(\dfrac{3}{7}\cdot x=\dfrac{9}{14}\)
=>\(x=\dfrac{9}{14}:\dfrac{3}{7}=\dfrac{9}{14}\cdot\dfrac{7}{3}=\dfrac{3}{2}\)
a: Ta có: \(4\left(2-x\right)+x\left(x+6\right)=x^2\)
\(\Leftrightarrow8-4x+x^2+6x-x^2=0\)
\(\Leftrightarrow2x=-8\)
hay x=-4
b: Ta có: \(x\left(x-7\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2-7x-x^2-3x+10=0\)
\(\Leftrightarrow-10x=-10\)
hay x=1
c: Ta có: \(\left(2x+3\right)\left(3-2x\right)+\left(2x-1\right)^2=2\)
\(\Leftrightarrow9-4x^2+4x^2-4x+1=2\)
\(\Leftrightarrow-4x=-8\)
hay x=2
a: \(x\left(1-2x\right)+2x^2=14\)
=>\(x-2x^2+2x^2=14\)
=>x=14
b: \(x\left(x-5\right)+3x-15=0\)
=>\(\left(x-5\right)\left(x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
a) \(\Rightarrow x^2=16\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
b) \(\Rightarrow\left(x-1\right)^3=27\Rightarrow x-1=3\Rightarrow x=4\)
c) \(\Rightarrow3^x.3^3=3^{12}\)
\(\Rightarrow3^x=3^9\Rightarrow x=9\)
a) (9 - x)^3 = 216
(9 - x)^3 = 6^3
9 - x = 6
-x = 6 - 9
-x = -3
x = 3
b) 2^x + 2 - 2^x = 96
3.2^x = 96
2^x = 96 : 3
2^x = 32
2^x = 2^5
x = 5