K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 9 2019

\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}\)

\(A=2\left(\frac{1}{\sqrt{1}+\sqrt{1}}+\frac{1}{\sqrt{2}+\sqrt{2}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}\right)\)

\(A>2\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\right)\)

\(A>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)\)

\(A>2\left(\sqrt{n+1}-1\right)\)

30 tháng 6 2016

Ta có      

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)=\(\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

                         \(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{n}-\frac{1}{\sqrt{n+1}}\right)\)

nên     \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+.....+\frac{1}{\left(n+1\right)\sqrt{n}}\)\(< 2\left(\left(\frac{1}{n}-\frac{1}{\sqrt{n+1}}\right)+...+\left(3\sqrt{2}-2\right)+\left(2-1\right)\right)\)                                                                                            = 2 

30 tháng 6 2016

chỗ dòng cuối nhầm

27 tháng 11 2020

Ta có :

\(\frac{1}{\sqrt{k}}=\frac{2}{2\sqrt{k}}>\frac{2}{\sqrt{k}+\sqrt{k+1}}\)

\(=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}\)

\(=2\left(\sqrt{k+1}-\sqrt{k}\right)\)

Vậy : \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>2\left(\sqrt{2}-1\right)+2\left(\sqrt{3}-\sqrt{2}\right)+....+2\left(\sqrt{n+1}-\sqrt{n}\right)\)

\(=2\left(\sqrt{n+1}-1\right)\left(đpcm\right)\)

20 tháng 3 2019

@Akai Haruma, Nguyen, Nguyễn Thị Ngọc Thơsvtkvtm

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Bạn tham khảo tại đây:

Câu hỏi của Vũ Sơn Tùng - Toán lớp 9 | Học trực tuyến

17 tháng 8 2018

Mấy bài này đã có người làm rồi nhé bạn vào câu hỏi tương tự mà xem.