Cho đường tròn tâm O đường kính AB, M là điểm chính giữa của một nửa đường tròn (O) với đường kính AB, C là điểm bất kỳ trên nửa còn lại, CM cắt AB tại D. Vẽ dây cung AE vuông góc với CM tại F (E nằm trên đường tròn).
- Chứng minh rằng tứ giác ACEM là hình thang cân.
- Vẽ CH vuông góc với AB (H nằm trên đoạn AB). Chứng minh rằng CM là phân giác góc HCO.
- Chứng minh rằng \(CD\le\frac{1}{2}AE\).
1) Vì ^AEB chắn nửa đường tròn (O) nên EA vuông góc EB. Do đó BE // CM.
Suy ra tứ giác BECM là hình thang cân (Vì 4 điểm B,C,M,E cùng thuộc (O))
Kết hợp với M là điểm chính giữa cung AB suy ra CE = BM = AM hay (CE = (AM
Vậy thì tứ giác ACEM là hình thang cân (đpcm).
2) Đường tròn (O) có M là điểm chính giữa cung AB, suy ra MO vuông góc AB
Từ đó MO // CH suy ra ^HCM = ^OMC = ^OCM. Vậy CM là phân giác của ^HCO (đpcm).
3) Kẻ đường kính MG của đường tròn (O). Dễ thấy ^DOG = ^DCG (= 900)
Suy ra 4 điểm C,D,O,G cùng thuộc đường tròn đường kính DG
Mặt khác AB là trung trực của MG, D thuộc AB nên DG = DM
Theo mối quan hệ giữa đường kính và dây ta có:
\(CD\le DG=DM\Leftrightarrow2CD\le DM+CD=CM\Leftrightarrow CD\le\frac{1}{2}CM\)
Lại có tứ giác ACEM là hình thang cân, do vậy \(CD\le\frac{1}{2}CM=\frac{1}{2}AE\)(đpcm).
Dấu "=" xảy ra khi và chỉ khi C là điểm chính giữa cung AB không chứa M của (O).