@anh alibaba nguyễn
Đề: Cho x, y, z không âm và x + y + z = 3. Tìm min của \(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
Trong bài này em sử dùng các bđt sau: \(\sqrt{a+b}+\sqrt{b+c}\ge\sqrt{b}+\sqrt{a+b+c}\)
và \(\sqrt{a}+\sqrt{c}\ge\sqrt{a+c}\)
Đẳng thức xảy ra khi a hoặc c = 0
Áp dụng vào ta có: \(A\ge\sqrt{y}+\sqrt{x+y+z}+\sqrt{z+x}\)
\(\ge\sqrt{x+y+z}+\sqrt{x+y+z}=2\sqrt{x+y+z}=2\sqrt{3}\)
Đẳng thức em chả biết xét thế nào nữa:(
Èo, ko gõ cái quái gì cũng bị chờ duyệt-_- Thua olm.
Bài làm của em đầu tiên phải giả sử: \(3\ge y\ge x\ge z\ge0\)
Xét dấu nó thì e chỉ cần xét từng cái là được
Cái thứ nhất:
\(\sqrt{x+y}+\sqrt{y+z}=\sqrt{y}+\sqrt{x+y+z}\)
\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}=\sqrt{y\left(x+y+z\right)}\)
\(\Leftrightarrow xz=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)
Cái thứ 2:
\(\sqrt{y}+\sqrt{z+x}=\sqrt{x+y+z}\)
\(\Leftrightarrow2\sqrt{y\left(x+z\right)}=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\x+z=0\end{cases}}\)
Kết hợp cả 2 điều kiện thì suy ra được
\(x=z=0;y=3\)