K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

\(g,=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}+\dfrac{4\left(\sqrt{3}-1\right)}{2}+12-3\sqrt{3}\\ =\sqrt{3}+2\sqrt{3}-2+12-3\sqrt{3}=10\)

NV
6 tháng 1 2024

Do G là trọng tâm

\(\Rightarrow\overrightarrow{BG}=\dfrac{1}{3}\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=-\dfrac{1}{3}AB+\dfrac{1}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

\(\Rightarrow T=-\dfrac{1}{3}\)

 

6 tháng 1 2024

Để tính tổng T = x + y, ta cần tìm giá trị của x và y.

Theo định nghĩa, trọng tâm G của tam giác ABC là điểm giao của ba đường trung tuyến, tức là các đoạn thẳng nối mỗi đỉnh của tam giác với trung điểm của đoạn thẳng đối diện.

Trong bài toán này, ta biết rằng vecto BG có thể được biểu diễn bằng tổng của vecto AB và AC theo các hệ số x và y: BG = xAB + yAC.

Chúng ta cần tìm tổng x + y. Để làm điều này, ta có thể so sánh hệ số của vecto BG đã cho và biểu diễn vecto BG bằng các hệ số x và y:

Theo công thức trung điểm, ta có: BG = 1/2 BA + 1/2 BC.

So sánh với biểu diễn vecto BG đã cho: BG = xAB + yAC.

Áp dụng so sánh, ta có: 1/2 BA + 1/2 BC = xAB + yAC.

Vì BA + AC = BC (điều này có thể được chứng minh dựa trên tính chất của trọng tâm), ta có thể thay thế BC bằng BA + AC trong phương trình và thu gọn được: 1/2 BA + 1/2 (BA + AC) = xAB + yAC, 1/2 BA + 1/2 BA + 1/2 AC = xAB + yAC, BA + 1/2 AC = xAB + yAC.

So sánh hệ số của các vecto AB và AC, ta có hệ phương trình: x = 1, y = 1/2.

Vậy tổng T = x + y = 1 + 1/2 = 3/2.

Đáp án: T = 3/2.

4.3:

a: Xét ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

b: ΔCED đồng dạng với ΔCAB

=>ED/AB=EC/AC

=>ED*AC=EC*AB

c: BC=căn 9^2+12^2=15cm

AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=15/7

=>DC=60/7cm

c: \(=3.7\cdot12+3.7\cdot70+3.7\cdot18\)

=3,7(12+70+18)

=3,7*100=370

d: \(=202,2\left(3+6+1\right)=202,2\cdot10=2022\)

e: \(=4,5\cdot15+4,5\cdot90+4,5\cdot25=4,5\left(15+90+25\right)=585\)

i: \(=3.18\cdot4+3.18\cdot75+3.1\cdot8+3.18\cdot13\)

\(=3,18\left(4+75+13\right)+24,8\)

\(=317.36\)

Mọi người giúp em giải 5 bài tập này với ạ! Em xin cảm ơn nhiều! Câu 1 : Đốt cháy hoàn toàn 5,6 g HCHC A thu được 13,2 g CO2 và 3,6 g H2O. Tỉ khối của A so với H2 là 28. Xác định CTPT của A. Câu 2 Đốt cháy hoàn toàn 3g chất A (chứa C, H, O) thu được 4,4 g CO2 và 1,8 g H2O. Thể tích hơi của của 3 g chất A bằng thể tích của 1,6g khí oxi (ở cùng đk về nhiệt độ và áp suất). Xác định CTPT của...
Đọc tiếp
Mọi người giúp em giải 5 bài tập này với ạ! Em xin cảm ơn nhiều! Câu 1 : Đốt cháy hoàn toàn 5,6 g HCHC A thu được 13,2 g CO2 và 3,6 g H2O. Tỉ khối của A so với H2 là 28. Xác định CTPT của A. Câu 2 Đốt cháy hoàn toàn 3g chất A (chứa C, H, O) thu được 4,4 g CO2 và 1,8 g H2O. Thể tích hơi của của 3 g chất A bằng thể tích của 1,6g khí oxi (ở cùng đk về nhiệt độ và áp suất). Xác định CTPT của chất A. Câu 3. Hợp chất X có phần tẳm khối lượng C, H, O lần lượt bằng 54,54%; 9,10% và 36,36%. Khối lượng mol phân tử của X bằng 88. Xác định CTPT của X. Câu 4. Từ tinh dầu chanh người ta tách được chất limonen thuộc loại hiđrocacbon có hàm lượng nguyên tố H là 11,765%. Hãy tìm CTPT của limonen, biết tỉ khối hơi của limonen so với heli bằng 34.
1
4 tháng 2 2021

Em chia nhỏ câu hỏi để mọi người hỗ trợ nhanh nhất nhé !!

29 tháng 6 2021

e) \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(x\ge-2\right)\)

\(\Rightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x+5}+\sqrt{x+2}\right)\left(1+\sqrt{\left(x+2\right)\left(x+5\right)}\right)=3\left(\sqrt{x+5}+\sqrt{x+2}\right)\)

\(\Leftrightarrow3\left(1+\sqrt{\left(x+2\right)\left(x+5\right)}\right)=3\left(\sqrt{x+5}+\sqrt{x+2}\right)\)

\(\Rightarrow1+\sqrt{\left(x+2\right)\left(x+5\right)}=\sqrt{x+5}+\sqrt{x+2}\)

\(\Rightarrow\sqrt{x+5}+\sqrt{x+2}-\sqrt{\left(x+2\right)\left(x+5\right)}-1=0\)

\(\Leftrightarrow\left(1-\sqrt{x+5}\right)\left(\sqrt{x+2}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}1=\sqrt{x+5}\\\sqrt{x+2}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

mà \(x\ge-2\Rightarrow x=-1\)

NV
23 tháng 11 2021

1.1

Pt có 2 nghiệm trái dấu và tổng 2 nghiệm bằng -3 khi:

\(\left\{{}\begin{matrix}ac< 0\\x_1+x_2=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(m+2\right)< 0\\\dfrac{2m+1}{m+2}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m=-\dfrac{7}{5}\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

b.

Pt có nghiệm kép khi:

\(\left\{{}\begin{matrix}m+2\ne0\\\Delta=\left(2m+1\right)^2-8\left(m+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m^2-4m-15=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)

30 tháng 4 2022

\(j,\left(\dfrac{-1}{2}\right)^3:1\dfrac{3}{8}-25\%\left(-6\dfrac{2}{11}\right)\)
\(=\dfrac{-1}{8}:\dfrac{11}{8}-\dfrac{1}{4}.\dfrac{-68}{11}\)
\(=\dfrac{-1}{11}-\dfrac{-17}{11}\)
\(=\dfrac{16}{11}\)

21 tháng 9 2021

\(b,B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\left(x\ge0;x\ne4;x\ne9\right)\\ B=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)

\(c,B< A\Leftrightarrow\dfrac{\sqrt{x}-4}{\sqrt{x}-2}< \dfrac{\sqrt{x}+1}{\sqrt{x}-2}\Leftrightarrow\dfrac{\sqrt{x}-4}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}< 0\\ \Leftrightarrow\dfrac{-5}{\sqrt{x}-2}< 0\Leftrightarrow\sqrt{x}-2>0\left(-5< 0\right)\\ \Leftrightarrow x>4\\ d,P=\dfrac{B}{A}=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}:\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=\dfrac{\sqrt{x}-4}{\sqrt{x}+1}=1-\dfrac{5}{\sqrt{x}+1}\in Z\\ \Leftrightarrow5⋮\sqrt{x}+1\Leftrightarrow\sqrt{x}+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{-6;-2;0;4\right\}\\ \Leftrightarrow x\in\left\{0;16\right\}\left(\sqrt{x}\ge0\right)\)

\(e,P=1-\dfrac{5}{\sqrt{x}+1}\)

Ta có \(\sqrt{x}+1\ge1,\forall x\Leftrightarrow\dfrac{5}{\sqrt{x}+1}\ge5\Leftrightarrow1-\dfrac{5}{\sqrt{x}+1}\le-4\)

\(P_{max}=-4\Leftrightarrow x=0\)