Giúp mình bài này với
Y=-x^3+x^2–3x+1
y=x^4+3x^2+1
Y=x+1/3-x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+y\right).\left(x^2-xy+y^2\right)-\left(x-y\right).\left(x^2+xy+y^2\right)=\left(x^3+y^3\right)-\left(x^3-y^3\right)=2y^3\)
=> Biểu thức A phụ thuộc vào giá trị của y
\(\left(x-1\right)^3+3x.\left(x-4\right)+1=0\Leftrightarrow x^3-3x^2+3x-1+3x^2-12x+1=0\)
\(\Leftrightarrow x^3-9x=0\Leftrightarrow x.\left(x^2-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)
a) \(x^2+2x^2+x=x\left(x+2x+1\right)=x\left(x+1\right)^2\)
b) \(xy+y^2-x-y=\left(xy-x\right)+y^2-y=x\left(y-1\right)+y\left(y-1\right)=\left(y-1\right)\left(x+y\right)\)mấy câu sau bạn làm tương tự nhé, đặt biến x với x và y với y là được. có gì ib face cho mình
có gì sai xót mong m.n bỏ qua và nhắc nhở ạ
`Answer:`
1) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=[x\left(x+3\right)][\left(x+1\right)\left(x+2\right)]+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
2) \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=[\left(4x+1\right)\left(3x+2\right)][\left(12x-1\right)\left(x+1\right)]-4\)
\(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)
\(=[\left(12x^2+11x+0,5\right)+1,5][\left(12x^2+11x+0,5\right)-1,5]-4\)
\(=\left(12x^2+11x+0,5\right)^2-\left(1,5\right)^2-4\)
\(=\left(12x^2+11x+0,5\right)^2-\left(2,5\right)^2\)
\(=\left(12x^2+11x+0,5-2,5\right)\left(12x^2+11x+0,5+2,5\right)\)
\(=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)
3) \(\left(x^2+6x+5\right)\left(x^2+10x+21\right)+15\)
\(=\left(x^2+x+5x+5\right)\left(x^2+3x+7x+21\right)+15\)
\(=\left(x+1\right)\left(x+5\right)\left(x+3\right)\left(x+7\right)+15\)
\(=[\left(x+1\right)\left(x+7\right)][\left(x+5\right)\left(x+3\right)]+15\)
\(=\left(x^2+x+7x+7\right)\left(x^2+3x+5x+15\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(v=x^2+=8x+11\)
Đa thức có dạng sau: \(\left(v-4\right)\left(v+4\right)+15\)
\(=v^2-4^2+15\)
\(=v^2-1\)
\(=\left(v+1\right)\left(v-1\right)\)
\(=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
4) \(\left(x^2-a\right)^2-6x^2+4x+2a\)
\(=\left(x^2-a\right)\left(x^2-a\right)-6x^2+4x+2a\)
\(=\left(x^2-a\right).x^2-a\left(x^2-a\right)-6x^2+4x+2a\)
\(=x^4-ax^2-a.\left(x^2-a\right)-6x^2+4x+2a\)
\(=x^4-ax^2-\left(ax^2-aa\right)-6x^2+4x+2a\)
\(=x^4-2ax^2+a^2-6x^2+2a+4x\)
6) \(a^2-b^2-c^2+2bc-2a+1\)
\(=\left(a^2-2a+1\right)-\left(b^2-2bc+c^2\right)\)
\(=\left(a-1\right)^2-\left(b-c\right)^2\)
\(=\left(a-b+c-1\right)\left(a+b-c-1\right)\)
7) \(4a^2-4b^2+16bc-16c^2\)
\(=4a^2-\left(4b^2-16bc+16c^2\right)\)
\(=\left(2a\right)^2-\left(2b-4c\right)^2\)
\(=\left(2a-2b+4c\right)\left(2a+2b-4c\right)\)
\(=2.\left(a-b-2c\right).2\left(a+b-2c\right)\)
\(=4\left(a-b-2c\right)\left(a+b-2c\right)\)
A = 2x2 - 6xy - 3xy - 6y - 2x2 + 8xy + 6y
= - xy
= \(\frac{2}{3}\)\(x\)\(\frac{3}{4}\)
= \(\frac{1}{2}\)
mk đang bận mấy câu kia tương tự nha
Đề yêu cầu gì hả bạn? Vẽ đồ thị thì thôi, mất thời gian lắm :D