K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2022

2.

\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)

ĐKXĐ là :

\(a\ne0;-3;-2\)

Vs a = 1 ta có:

=> P=3

1.

\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)

2 tháng 11 2016

M = (a + b)(a2 - ab + b2) + c(a2 + b2) - abc 

= - c(a2 - ab + b2) + c(a2 - ab + b2) = 0

23 tháng 8 2016

\(A^3+B^3+A^2C+B^2C-ABC\)

\(=\left(A+B\right)\left(A^2-AB+B^2\right)+C\left(A^2-AB+B^2\right)\)

\(=\left(A^2-AB+B^2\right)\left(A+B+C\right)\)

\(=\left(A^2-AB+B^2\right).0\)

\(=o\)

26 tháng 10 2016

là 0 chứ rút gọn gì nữa

17 tháng 7 2018

Ta có :

\(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)

\(M=a^3+b^3+a^2c+b^2c-abc\)

\(=\left(a^3+a^2c\right)+\left(b^3+b^2c\right)-abc\)

\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)

\(=a^2\left(-b\right)+b^2\left(-a\right)-abc\)

\(=-ab\left(a+b+c\right)=0\)

17 tháng 7 2018

Ta có: \(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)

\(M=a^3+b^3+c.\left(a^2+b^2\right)-abc\)

\(M=a^3+b^3+ca^2+cb^2-abc\)

\(M=a^2.\left(a+c\right)+b^2.\left(b+c\right)-abc\)

\(M=a^2.\left(-b\right)+b^2.\left(-a\right)\)

\(M=-a^2b-b^2a\)

\(M=-ab.\left(a+b\right)\)

\(M=-ab.\left(-c\right)\)

\(M=abc\)

Tham khảo nhé~

7 tháng 7 2017

Ta có:M=a3+b3+c(a2+b2)-abc

=(a+b)(a2-ab+b2)-(a+b)(a2+b2)+(a+b).ab

=(a+b)(a2-ab+b2-a2-b2+ab)

=(a+b).0=0

Vậy GT của M là:0

5 tháng 11 2016

\(a+b+c=0\Leftrightarrow a+b=-c\) thay vào : 

\(a^3+b^3+c\left(a^2+b^2\right)-abc=\left(a+b\right)^3-3ab\left(a+b\right)+c\left[\left(a+b\right)^2-2ab\right]-abc\)

\(=-c^3-3ab.\left(-c\right)+c\left[c^2-2ab\right]-abc\)

\(=-c^3+3abc+c^3-2abc-abc=0\)

29 tháng 5 2020

hello

10 tháng 6 2018

ta có : M=2.(a^3  +b^3) -3.(a^2 + b^2)

       <=>M=2.(a+b)(a^2  -ab  +b^2)  - 3(a^2  +3b^2)

      <=>M=2(a^2  -ab  +b^2)  -3(a^2 +b^2)               vì a+b=1(gt)

      <=>M=-(a^2 +b^2 +2ab)

      <=>M=-(a+b)^2

      <=>M=-1  (vì a+b=1)

4 tháng 10 2019

\(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)

\(=a^3+b^3+a^2c+b^2c-abc\)

\(=\left(a^3+a^2c\right)+\left(b^3+b^2c\right)-abc\)

\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)

\(=-ba^2-ab^2-abc\)

\(=-ab\left(a+b+c\right)=0\)