168.168-168.158/101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{168.168-168.58}{110}=\frac{168.\left(168-58\right)}{110}=\frac{168.110}{110}=168\)
\(\frac{168.168-168.58}{110}=\frac{168\left(168-58\right)}{110}=\frac{168.110}{110}=168\)
\(\frac{168\cdot168-168\cdot58}{110}=\frac{168\cdot\left(168-58\right)}{110}=\frac{168\cdot110}{110}=168\)
\(A=\dfrac{1}{101}+\dfrac{2}{101}+\dfrac{3}{101}+...+\dfrac{99}{101}+\dfrac{100}{101}\)
\(=\dfrac{1+2+3+...+99+100}{101}\)
Đặt \(B=1+2+3+...+99+100\)
Số số hạng của B là:
\(\left(100-1\right):1+1=100\left(số\right)\)
Tổng của B:
\(\dfrac{\left(1+100\right)\times100}{2}=5050\)
\(\Rightarrow A=\dfrac{1+2+3+...+99+100}{101}\)
\(=\dfrac{B}{101}\)
\(=\dfrac{5050}{101}=50\)
Vậy \(A=50\)
A = \(\frac{1}{101}\) + \(\frac{2}{101}\) + \(\frac{3}{101}\) + ... + \(\frac{101}{101}\)
A = \(\frac{1+2+3+...+101}{101}\)
Số các số hạng của tử số là :
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tử số của A là :
( 101 + 1 ) x 101 : 2 = 5151
Vậy A = \(\frac{5151}{101}\) = \(51\)
A=1/101+2/101+3/101+....+101/101
=> A = 1+2+3+...+101/101
=> A = 5151/101
=> A = 51.
Mình giải thích chỗ 1+2+3+...101 nha.
Số số hạng là:
101 - 1 + 1 = 101 ( số )
Tổng là:
[(101+1).101]/2 = 5151
\(\frac{168.168-168.158}{101}\)
=\(\frac{168.\left(168-158\right)}{101}\)
=\(\frac{168.10}{101}\)
=\(\frac{1680}{101}\)