K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề 

\(\left(x-1\right)^{2018}+\left(y+3\right)^{2020}+\left|2x-y-z\right|=0\)

Vì \(\hept{\begin{cases}\left(x-1\right)^{2018}\ge0\forall x\\\left(y+3\right)^{2020}\ge0\forall y\\\left|2x-y-z\right|\ge0\forall x,y,z\end{cases}\Rightarrow\left(x-1\right)^{2018}+\left(y+3\right)^{2020}+\left|2x-y-z\right|\ge0\forall x,y,z}\)

Dấu " = " xảy ra khi :

( x - 1 )2018 = 0 

=> x = 1 

( y + 3 )2020  = 0 

=> y = - 3 

Thay x = 1 ; y = -3 và | 2x - y - z | ta đc

| 2.1 + 3 - z | = 0 

=> | 5 - z | = 0

=> z = 5 

Vậy x = 1 ; y = -3 ; z = 5 

6 tháng 12 2019

a) 2009 - |x - 2009| = x

 => |x - 2009| = 2009 - x (1)

ĐK : \(2009-x\ge0\Leftrightarrow x\le2009\)

Ta có (1) <=> \(\orbr{\begin{cases}x-2009=2009\\x-2009=-2009\end{cases}\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=2009\left(\text{loại}\right)\end{cases}}}\)

Vậy x = 0

b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2018}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2020}+\left|x+y-z\right|\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)

22 tháng 12 2019

\(\text{b)}\)

\(\text{Ta có: }\text{ }\left(2x-1\right)^{2018}\ge0\)

             \(\left(y-\frac{2}{5}\right)^{2020}\ge0\)

        \(\text{ và}\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)=0\)

\(\text{Dấu "=" xảy ra khi:}\)   

     \(\left(2x-1\right)^{2018}=0\) 

\(\Rightarrow2x-1\)         \(=0\)

\(\Rightarrow2x\)                  \(=1\)

\(\Rightarrow x\)                     \(=\frac{1}{2}\)

\(\text{ và:}\left(y-\frac{2}{5}\right)^{2020}=0\)

\(\Rightarrow y-\frac{2}{5}\)          \(=0\)

\(\Rightarrow y\)                      \(=\frac{2}{5}\)

\(\text{Nhớ k cho mình với nghe}\)     :33

25 tháng 9 2018

Ta có: (2x-1)2018≥0 ; (y-2/5)2018≥0 ; |x+y-z|≥0

=>\(\hept{\begin{cases}\left(2x-1\right)^{2018}=0\\\left(y-\frac{2}{5}\right)^{2018}=0\\\left|x+y-z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)

Chúc bạn học tốt!

25 tháng 9 2018

Ta có : 

\(\left(2x-1\right)^{2018}\ge0\)

\(\left(y-\frac{2}{5}\right)^{2018}\ge0\)

\(\left|x+y-z\right|\ge0\)

Mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}+\left|x+y-z\right|=0\) ( Giả thiết ) 

\(\Rightarrow\)\(\hept{\begin{cases}\left(2x-1\right)^{2018}=0\\\left(y-\frac{2}{5}\right)^{2018}=0\\\left|x+y-z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)

Vậy \(x=\frac{1}{2}\)\(;\)\(y=\frac{2}{5}\) và \(z=\frac{9}{10}\)

Chúc bạn học tốt ~ 

2 tháng 1 2023

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Vì \(\left(x+y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+1\right)^2\ge0\)

\(\Rightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}=-1\)

24 tháng 11 2019

Ta có : (7x - 5y)2018 + (3x - 2z)2020 + (xy + yz + xz - 4500)2018 = 0

Ta có : \(\hept{\begin{cases}\left(7x-5y\right)^{2018}\ge0\\\left(3x-2z\right)^{2020}\ge0\\\left(xy+yz+xz-4500\right)^{2018}\ge0\end{cases}}\)

 \(\Rightarrow\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+xz-4500\right)^{2018}\ge0\)

Dấu bằng xảy ra <=> 

\(\begin{cases}7x=5y\\3x=2z\\xy+yz+xz=4500\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{7}\\\frac{x}{2}=\frac{z}{3}\\xy+yz+xz=4500\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}\\\frac{x}{10}=\frac{z}{15}\\xy+yz+xz=4500\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\x+y+z=4500\end{cases}}\)

Đặt \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}}\)

=> xy + yz + xz = 4500

<=> 10k.14k + 14k.15k + 10k.15k = 4500

=> 140.k2 + 210.k2 + 150.k2 = 4500

=> k2.(140 + 210 + 150) = 4500

=> k2 . 500 = 4500

=> k2 = 9

=> k = \(\pm3\)

Nếu k = 3

=> \(\hept{\begin{cases}x=30\\y=42\\z=45\end{cases}}\)

Nếu k = - 3

=> \(\hept{\begin{cases}x=-30\\y=-42\\z=-45\end{cases}}\)

27 tháng 9 2018

vì cả 2 vế này đều lớn hơn hoặc bằng 0 mà giải thiết cho là = 0 , do đó ta xét trường hợp 2 vế này = 0 , mk nói hơi khó hiểu nhưng chắc dạng này bạn học đâu đó rồi đúng ko

27 tháng 9 2018

\(\left|x+y\right|^{2020}\ge0\forall x;y\)

    \(2018\left|y-3\right|\ge0\forall y\)

\(\Rightarrow\left|x+y\right|^{2020}+2018\left|y-3\right|\ge0\)

Mà \(\left|x+y\right|^{2020}+2018\left|y-3\right|=0\)

\(\text{Nên dấu "=" xảy ra}\) \(\Leftrightarrow\hept{\begin{cases}\left|x+y\right|^{2020}=0\\2018\left|y-3\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=3\end{cases}}}\)

\(\text{Vậy x=-3 và y=3}\)