K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2019

sai đề

13 tháng 9 2019

Từ a+b+c=2m\(\Rightarrow b+c-a=2m-2a\)

\(b+c-a=2\left(m-a\right)\)(1)

Xét \(m=0\)

\(\Rightarrow\hept{\begin{cases}a+b+c=0\\4m\cdot\left(m-a\right)=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(a+b+c\right)\left(b+c-a\right)=0\\4m\cdot\left(m-a\right)=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2bc+b^2+c^2-a^2=0\\4m\left(m-a\right)=0\end{cases}}\)

\(\Rightarrowđpcm\)

Xét \(m\ne0\)

Từ (1) \(\Rightarrow2m\left(b+c-a\right)=4m\left(m-a\right)\)

\(\Rightarrow\left(a+b+c\right)\left(b+c-a\right)=4m\left(m-a\right)\)

\(\Rightarrow b^2+c^2+2bc-a^2=4m\left(m-a\right)\)(đpcm)

NV
2 tháng 4 2023

BĐT cần chứng minh tương đương:

\(a^2+b^2+c^2\ge2ab-2bc+2ca\)

\(\Leftrightarrow a^2+b^2+c^2+2bc-2a\left(b+c\right)\ge0\)

\(\Leftrightarrow a^2+\left(b+c\right)^2-2a\left(b+c\right)\ge0\)

\(\Leftrightarrow\left(a-b-c\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Đề là tìm GTNN hay GTLN hả bạn?

27 tháng 3 2020

Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath

17 tháng 4 2020

tvbobnokb' n

iai

  ni;bv nn0

26 tháng 3 2018

Do a+b+c= 0

<=> a+b= -c 

=> (a+b)2= c2 

Tương tự: (c+a)2= b2, (c+b)2= a2   

Ta có: \(A=\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}\)

\(=\frac{1}{b^2+c^2-\left(b+c\right)^2}+\frac{1}{c^2+a^2-\left(c+a\right)^2}+\frac{1}{a^2+b^2-\left(a+b\right)^2}\)

\(=\frac{1}{-2bc}+\frac{1}{-2ca}+\frac{1}{-2ab}\)

\(=\frac{a+b+c}{-2abc}=0\)