Tim x\(\left|3x-5\right|=5-3x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(3x-5\right)-\left(5-3x\right)=0\)
\(\Leftrightarrow\)\(2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\Leftrightarrow\)\(\left(3x-5\right)\left(2x+1\right)=0\)
=> 3x - 5 = 0 hoặc 2x + 1 = 0
<=> 3x = 5 <=> 2x = -1
<=> x = \(\frac{5}{3}\) <=> x = \(\frac{-1}{2}\)
k mình nha bạn
a ) \(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(\Leftrightarrow3x^2-3x-3x^2+2x=5\)
\(\Leftrightarrow-x=5\)
\(\Leftrightarrow x=-5\)
Vậy phương trình có nghiệm x = - 5 .
a)|3x-2|=|3x+5|
x<-5/3 or x>=2/3
3x-2=3x+5=> loai
-5/3<=x<2/3
3x-2=-3x-5
6x=-3;x=-1/2(n)
3) \(\left(x+3\right)^2+\left(x-2\right)^2-2\left(x+3\right)\left(x-2\right)\)
\(=\left(x+3\right)^2-2\left(x+3\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left[\left(x+3\right)-\left(x-2\right)\right]^2\)
\(=\left(x+3-x+2\right)^2\)
\(=5^2=25\)
4) \(\left(3x-5\right)^2-2\left(3x-5\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left[\left(3x-5\right)-\left(3x+5\right)\right]^2\)
\(=\left(3x-5-3x-5\right)^2\)
\(=\left(-10\right)^2\)
\(=100\)
a) Ta có: \(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=4\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3}{2};4\right\}\)
b) Ta có: \(x\left(2x-9\right)=3x\left(x-5\right)\)
\(\Leftrightarrow x\left(2x-9\right)-3x\left(x-5\right)=0\)
\(\Leftrightarrow x\left(2x-9\right)-x\left(3x-15\right)=0\)
\(\Leftrightarrow x\left(2x-9-3x+15\right)=0\)
\(\Leftrightarrow x\left(6-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy: S={0;6}
c) Ta có: \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{5;\dfrac{3}{2}\right\}\)
d) Ta có: \(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
\(\Leftrightarrow6\left(5-x\right)=2\left(3x-4\right)\)
\(\Leftrightarrow30-6x=6x-8\)
\(\Leftrightarrow30-6x-6x+8=0\)
\(\Leftrightarrow-12x+38=0\)
\(\Leftrightarrow-12x=-38\)
\(\Leftrightarrow x=\dfrac{19}{6}\)
Vậy: \(S=\left\{\dfrac{19}{6}\right\}\)
e) Ta có: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow6x+4-3x-1=12x+10\)
\(\Leftrightarrow3x+3-12x-10=0\)
\(\Leftrightarrow-9x-7=0\)
\(\Leftrightarrow-9x=7\)
\(\Leftrightarrow x=-\dfrac{7}{9}\)
Vậy: \(S=\left\{-\dfrac{7}{9}\right\}\)
ĐKXĐ:\(\left\{{}\begin{matrix}x-2\ne0\\x-5\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne2\\x\ne5\end{matrix}\right.\)
\(\frac{3x}{x-2}-\frac{x}{x-5}=\frac{3x}{\left(x-2\right)\left(5-x\right)}\)
\(\frac{3x\left(5-x\right)}{\left(x-2\right)\left(5-x\right)}+\frac{x\left(x-2\right)}{\left(x-2\right)\left(5-x\right)}-\frac{3x}{\left(x-2\right)\left(5-x\right)}=0\)
\(15x-3x^2+x^2-2x-3x=0\)
\(10x-2x^2=0\)
\(2x.\left(5-x\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x=0\\5-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\left(chọn\right)\\x=5\left(loại\right)\end{matrix}\right.\)
Ta có:
|2x-5|+1=3x
=> |2x-5|=3x-1
=> 2x-5=3x-1 ; 2x-5=1-3x
=> -5+1=3x-2x ; 2x+3x=1+5
=>x=-4 ; 5x =6
; x=\(\dfrac{5}{6}\)
| 3x - 5 | = 5 - 3x ( * )
Đk: \(5-3x\ge0\)
\(\Leftrightarrow-3x\ge-5\)
\(\Leftrightarrow x\le\frac{5}{3}\) ( cái này là chia cho số âm nên biểu thức đổi chiều dấu nha em! )
( * ) => \(\orbr{\begin{cases}3x-5=5-3x\\3x-5=-\left(5-3x\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x=10\\3x-5=-5+3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\left(nhận\right)\\0x=0\left(VSN\right)\left(nhận\right)\end{cases}}\)
Vậy \(x\in\left(-\infty;\frac{5}{3}\right)\) ( Có nghĩa là x sẽ bằng tất cả các số từ "trừ vô cùng đến 5/3" nha )
Anh học 5 năm rồi nên cx ko nhớ rõ cách trình bày của lopws7, thông cảm