tìm x biết (24x-1)(12x-1)(8x-1)(6x-1)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\\frac{-1-\sqrt{5}}{4}\le x\le-\frac{1}{8}\end{matrix}\right.\)(Có thể chưa chính xác)
\(12x^2+16x+1=2\sqrt{24x^3+12x^2-6x}+4\sqrt{x^2-x}+4\sqrt{8x^3+9x^2+x}\)
Áp dụng AM-GM:
\(2\sqrt{24x^3+12x^2-6x}=2\sqrt{6x\left(4x^2+2x-1\right)}\le6x+\left(4x^2+2x-1\right)=4x^2+8x-1\left(1\right)\)
\(4\sqrt{x^2-x}=2\sqrt{1.\left(4x^2-4x\right)}\le4x^2-4x+1\left(2\right)\)
\(4\sqrt{8x^3+9x^2+x}=2\sqrt{\left(4x^2+4x\right)\left(8x+1\right)}\le\left(4x^2+4x\right)+\left(8x+1\right)=4x^2+12x+1\left(3\right)\)
Cộng \(\left(1\right),\left(2\right),\left(3\right)\), ta có: \(VP\le VT\)
Dấu ''='' xảy ra khi :
\(\left\{{}\begin{matrix}4x^2+2x-1=6x\\4x^2-4x=1\\4x^2+4x=8x+1\end{matrix}\right.\)\(\Rightarrow4x^2-4x-1=0\)
\(\Rightarrow x=\frac{1\pm\sqrt{2}}{2}\) (t/m ĐKXĐ)
Lời giải:
PT $\Leftrightarrow 8x^3-16x^2+6x+2=0$
$\Leftrightarrow (8x^3-8x^2)-(8x^2-8x)-(2x-2)=0$
$\Leftrightarrow 8x^2(x-1)-8x(x-1)-2(x-1)=0$
$\Leftrightarrow (x-1)(8x^2-8x-2)=0$
$\Leftrightarrow 2(x-1)(4x^2-4x-1)=0$
$\Leftrightarrow x-1=0$ hoặc $4x^2-4x-1=0$
Nếu $x-1=0\Leftrightarrow x=1$
Nếu $4x^2-4x-1=0$
$\Leftrightarrow (2x-1)^2-2=0$
$\Leftrightarrow (2x-1-\sqrt{2})(2x-1+\sqrt{2})=0$
$\Leftrightarrow x=\frac{1\pm \sqrt{2}}{2}$
\(4x\left(12x-9\right)-8x\left(6x-5\right)=1\)
\(\Leftrightarrow48x^2-36x-48x^2+40x=1\)
\(\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\)
a,4x^2-4x+1=0
4x^2-2x-2x+1=0
2x (2x-1)-(2x-1)=0
(2x-1)(2x-1)=0
(2x-1)^2=0
=>2x-1=0 <=> x=1/2
1) \(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x\right)^2-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
2) \(x^3-6x^2+12x-8=27\)
\(\Leftrightarrow x^3-3\cdot x^2\cdot2+3\cdot2^2\cdot x-2^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=3^3\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=3+2\)
\(\Leftrightarrow x=5\)
3) \(x^2-8x+16=5\left(4-x\right)^3\)
\(\Leftrightarrow\left(x-4\right)^2=5\left(4-x\right)^3\)
\(\Leftrightarrow\left(4-x\right)^2=5\left(4-x\right)^3\)
\(\Leftrightarrow5\left(4-x\right)=1\)
\(\Leftrightarrow4-x=\dfrac{1}{5}\)
\(\Leftrightarrow x=4-\dfrac{1}{5}\)
\(\Leftrightarrow x=\dfrac{19}{5}\)
4) \(\left(2-x\right)^3=6x\left(x-2\right)\)
\(\Leftrightarrow8-12x+6x^2-x^3=6x^2-12x\)
\(\Leftrightarrow-12x+6x^2-6x^2+12x=8-x^3\)
\(\Leftrightarrow8-x^3=0\)
\(\Leftrightarrow x^3=8\)
\(\Leftrightarrow x^3=2^3\)
\(\Leftrightarrow x=2\)
5) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x-3x\right)+\left(3x^2+3x^2\right)+\left(1+1\right)-6x^2+12x-6=-10\)
\(\Leftrightarrow0+0+0+\left(6x^2-6x^2\right)+12x-4=-10\)
\(\Leftrightarrow12x-4=-10\)
\(\Leftrightarrow12x=-10+4\)
\(\Leftrightarrow12x=-6\)
\(\Leftrightarrow x=\dfrac{-6}{12}\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
6) \(\left(3-x\right)^3-\left(x+3\right)^3=36x^2-54x\)
\(\Leftrightarrow27-27x+9x^2-x^3-x^3-9x^2-27x-27=36x^2-54x\)
\(\Leftrightarrow-54x-2x^3=36x^2-54x\)
\(\Leftrightarrow-2x^3=36x^2\)
\(\Leftrightarrow-2x^3-36x^2=0\)
\(\Leftrightarrow-2x^2\left(x+18\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x^2=0\\x+18=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-18\end{matrix}\right.\)
Ta có : \(x^2-2x-1=0
\)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow
\)\(\left[\begin{array}{}
x-1=\sqrt{2}\\
x-1=-\sqrt{2}
\end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
=\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016}
{(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016}
{x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{2016}{12x + 2016}\)
=\(\dfrac{2016}{12(x+1)+2004}\)
=\(\dfrac{168}{x+1+167}\)
=\(\left[\begin{array}{}
\dfrac{168}{\sqrt{2}+167}\\
\dfrac{168}{-\sqrt{2}+167}
\end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x
\) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.
Bài 1. Đề khó nhìn quá mình không làm được ._.
Bài 2.
12x2 + 24x - 15 = ( 2x - a )( 6x - 3 )
<=> 12x2 + 24x - 15 = 12x2 - 6x - 6ax + 3a
<=> 12x2 + 24x - 15 = 12x2 + ( -6 - 6a )x + 3a
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}-6-6a=24\\-15=3a\end{cases}}\Leftrightarrow a=-5\)
a, 4x^2 - 4x = -1
\(\Leftrightarrow\)4x^2 - 4x + 1 = 0
\(\Leftrightarrow\)(2x-1)2 =0
\(\Leftrightarrow\)2x - 1 = 0
\(\Leftrightarrow\)x = 1/2
b, \(\Leftrightarrow\)( 2x + 1)^3 = 0
\(\Leftrightarrow\)2x + 1 = 0
\(\Leftrightarrow\)x = -1/2
đúng thì
a) \(4x^2-4x=-1\)
\(\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
b) \(8x^3+12x^2+6x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^3=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
(24x-1)(24x-2)(24x-3)(24x-4)=24
đặt 24x-4=a=>a(a+1)(a+2)(a+3)=24
<=>(a^2+3a)(a^2+3a+2)=24
đặt a^2+3a+1=b => (b-1)(b+1)=24
<=> b^2-5^2=0
<=> b= 5 hoặc b=-5 thay vô tìm a rồi tìm x
chúc bạn hk tốt