K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2019

\(4x^2+4x+15=\left(2x\right)^2+2.2x.1+1^2-1^2+15=\left(2x+1\right)^2+14>0\)với mọi x

9 tháng 10 2017

Phép nhân và phép chia các đa thức

Câu a mình chắc chắn là đúng vì mình làm rồi.vui

Chúc bạn học tốt.

9 tháng 10 2017

b) \(-4x^2-4x-2\) <0 với mọi x

\(=-\left(4x^2+4x+2\right)\)

\(=-\left[\left(2x^2\right)+2.2x.1+1^2+2\right]\)

\(=-\left[\left(2x+1\right)^2+2\right]\)

\(=-\left(2x+1\right)^2-2\)

Nx : \(-\left(2x+1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(2x+1\right)^2-2< 0\) với mọi x

\(\Rightarrow-4x^2-4x-2< 0\) với mọi x

31 tháng 8 2021

\(4x^4+5x^2+5=\left(2x^2\right)^2+2.2x^2.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{55}{16}=\left(2x^2+\dfrac{5}{4}\right)^2+\dfrac{55}{16}\ge\dfrac{55}{16}>0\)

Ta có: \(4x^4\ge0\forall x\)

\(5x^2\ge0\forall x\)

Do đó: \(4x^4+5x^2\ge0\forall x\)

\(\Leftrightarrow4x^4+5x^2+5>0\forall x\)

15 tháng 8 2016

a)x2-6x+10

      Ta có:x2-6x+10=x2-2.3x+9+1

                               =(x-3)2+1

            Vì (x-3)2\(\ge\)0

 Suy ra:(x-3)2+1\(\ge\)1(đpcm)

b)4x-x2-5

      Ta có:4x-x2-5=-(x2-4x+5)

                           =-(x2-2.2x+4)-1

                           =-1-(x-2)2

              Vì -(x-2)2\(\le\)0

Suy ra:-1-(x-2)2\(\le\)-1(đpcm)

 

15 tháng 8 2016

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\) với mọi x

b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\) với mọi x

11 tháng 2 2018

A=\(x^2+6x+9+1\)

=\(\left(x-3\right)^2+1\)

Vì \(\left(x-3\right)^2\)\(\ge\)0 \(\forall\)x

=>\(\left(x-3\right)^2\)+1\(\ge\)1 \(\forall\) x

Vậy A luôn luôn dương với mọi x

B=4\(x^2-4x+1+2\)

=\(\left(2x-1\right)^2+2\)

Vì\(\left(2x-1\right)^2\ge0\forall\) x

=>\(\left(2x-1\right)^2+2\ge2\forall\) x\(\in R\)

Vậy B luôn luôn dương với x thuộc R

11 tháng 2 2018

\(A=x\left(x-6\right)+10\)

\(\Leftrightarrow A=x^2-6+10\)

\(\Leftrightarrow A=x^2+4\)

Ta có: \(x^2\ge0\) với mọi x thuộc R

\(\Rightarrow x^2+4\ge4\) với mọi x thuộc R

Do đó A luôn dương với mọi x thuộc R

20 tháng 1 2019

Ta có:  x 2 + 4 x 2 − 4 x − 2 x + k − 1 = 0

⇔ x − 2 x 2 − 4 x − 2 x + k + 3 = 0    ( 1 )

Đặt t = x − 2 x      h a y    x 2 − t x − 2 = 0 , phương trình trở thành t 2 − 4 t + k + 3 = 0 (2)

Nhận xét: với mỗi nghiệm t của phương trình (2) cho ta hai nghiệm trái dấu của phương trình (1)

Ta có :

∆ ' = 4 - k + 3 = 1 - k ⇒  phương trình (2) có hai nghiệm phân biệt  t 1 = 2 − 1 − k , t 2 = 2 + 1 − k với k < 1

+ Với t 1 = 2 − 1 − k  thì phương trình x 2 − 2 − 1 − k x − 2 = 0 có 1 nghiệm

x > 1 ⇔ a   f ( 1 ) < 0 ⇔ 1 2 − 2 − 1 − k .1 − 2 < 0 ⇔ k > − 8

+ Với t 2 = 2 + 1 − k thì phương trình x 2 − 2 + 1 − k x − 2 = 0 có 1 nghiệm

x > 1 ⇔ a   f ( 1 ) < 0 ⇔ 1 2 − 2 + 1 − k .1 − 2 < 0 ⇔ − 3 − 1 − k < 0 (luôn đúng với  k < 1 )

Vậy kết hợp điều kiện  k < 1  ta được - 8 < k < 1

Đáp án cần chọn là: B

12 tháng 6 2017

a) Ta có: 8 > 4 nên để 8x > 4x thì x > 0

Do đó, chỉ đúng khi x > 0 (hay nói cách khác nếu x < 0 thì a sai)

b) Ta có: 4 < 8 nên để 4x > 8x thì x < 0 .

Do đó, khẳng định chỉ đúng khi x < 0

c) chỉ đúng khi x ≠ 0

d) Ta có: 8 > 4 nên với mọi x thì 8+ x > 4+ x ( tính chất cộng hai vế của BĐT với 1 số)

Do đó, khẳng định đúng với mọi x.

Vậy khẳng định d là đúng với mọi giá trị của x.

27 tháng 10 2019

câu a hình như bạn ghi sai đề rồi

câu b:

Ta có: \(x^2-4x+12=x^2-4x+4+8\)

\(=\left(x-2\right)^2+8\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\in Q\)

\(\Rightarrow\text{​​}\left(x-2\right)^2+8\ge8>0\forall x\in Q\)

Do đó: \(x^2-4x+12>0\forall x\in Q\)(đpcm)