CMR:với mọi stn n khác 0 thì số 2n-1 và 2n+1 nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình VD cho bạn 2 bài thôi nha, các câu khác tương tự:
b)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
⇒ d ∈ Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
⇒ d ∈ Ư(2) ⇒ d ∈ {1,2}
d = 2 không là ước số của số lẻ 2n+3 ⇒ d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.
c)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
⇒ d ∈ Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
⇒ d ∈ Ư(2) ⇒ d ∈ {1,2}
d = 2 không là ước số của số lẻ 2n+3 ⇒ d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.
gọi d là ước chung lớn nhất của 2n+1 và 2n+3
vì 2n+1 và 2n+3 là 2 số lẻ => d lẻ
ta có \(\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\Rightarrow2⋮d\Rightarrow d\inƯ\left(2\right)=\left\{1,2\right\}}\)
mà d lẻ => d=1
=> 2n+1 và 2n+3 là 2 số nguyên tố cùng nhau (ĐPCM)
tớ chỉ làm cho cậu 1 cái thôi, còn lại cậu tự giải tương tự
Đặt d= ƯCLN (2n+1, 2n+3)
\(\Rightarrow2n+1⋮d\) và\(3n+2⋮d\)
=>\(3\left(2n+1\right)⋮d\) và\(2\left(3n+2\right)⋮d\)
\(\Rightarrow6n+3⋮d\) và\(6n+4⋮d\)
=>6n+4 - (6n+3) \(⋮d\)
=>\(1⋮d\)
=>d=1
Vậy cặp số trên nguyên tố cùng nhau với mọi STN n
Gọi d=ƯCLN(2n+1;2n^2-1)
=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d
=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d
=>n+1 chia hết cho d và 2n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
Gọi \(\left(2n-1;2n+1\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n-1⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-\left(2n-1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯ\left(2\right)=\left\{1;2\right\}\)
Do \(2n\)là số chẵn nên 2n+1 và 2n-1 là 2 số lẻ liên tiếp
Mà ước chung của 2 số lẻ thì không phải là 1 số chẵn
\(\Rightarrow d=1\)
\(\Rightarrow2n-1\)và 2n+1 nguyên tố cùng nhau
gọi d là ưcln (2n-1,2n+1)
=> 2n-1:d
2n+1:d
=>2:d
suy ra d =1,2
nếu d =2 thì 2n+1 :2(vô lí vì 2n+1 lẻ)
suy ra d=1