cho số hữu tỉ x=2/2a+1 tìm a để x thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Tìm x để A là số hữu tỉ.
để A là số hữu tỉ => x - 1 \(\ne\)0
=> x \(\ne\)1
vậy x thuộc Z và x \(\ne\) 1
`a,`
`A=3/(x-1)`
Để `A` là số hữu tỉ
`->x-1 \ne 0`
`->x\ne 0+1`
`-> x \ne 1`
Vậy `x \ne 1` để `A` là số hữu tỉ
`b,`
`A=3/(x-1) (x \ne 1)`
Để `A` thuộc Z
`->3` chia hết cho `x-1`
`->x-1` thuộc ước của `3 = {1;-1;3;-3}`
`->x` thuộc `{2;0;4;-2}` (Thỏa mãn)
Vậy `x` thuộc `{2; 0; 4;-2}` để `A` thuộc Z
`c,`
`A=3/(x-1) (x \ne 1)`
Để `A` lớn nhất
`->3/(x-1)` lớn nhất
`->x-1` nhỏ nhất
`->x-1=1` (Do `1` là số nguyên dương nhỏ nhất)
`->x=2` (Thỏa mãn)
Với `x=2`
`->A=3/(2-1)=3/1=3`
Vậy `max A=3` khi `x=2`
`d,`
`A=3/(x-1) (x \ne 1)`
Để `A` nhỏ nhất
`->3/(x-1)` nhỏ nhất
`->x-1` lớn nhất
`->x-1=-1` (Do `-1` là số nguyên âm lớn nhất)
`->x=0`
Với `x=0`
`-> A=3/(0-1)=3/(-1)=-3`
Vậy `min A=-3` khi `x=0`
\(A=\dfrac{x+2}{x+1}=1+\dfrac{1}{x+1}\)
Để A nguyên :
\(x+1\inƯ\left(1\right)\\ Ư\left(1\right)=\left\{1;-1\right\}\\ \Rightarrow\left\{{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
a: Để x là số dương thì 2a-5<0
hay \(a< \dfrac{5}{2}\)
b: Để x là số âm thì 2a-5>0
hay \(a>\dfrac{5}{2}\)
c: Để x=0 thì 2a-5=0
hay \(a=\dfrac{5}{2}\)
\(x=\dfrac{a-3}{2a}\)
\(x\in Z\Rightarrow a-3⋮2a\)
\(\Rightarrow2\left(a-3\right)⋮2a\)
\(\Rightarrow2a-6⋮2a\)
\(\Rightarrow6⋮2a\)
\(\Rightarrow3⋮a\Rightarrow a\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vậy...
e) Ta có: x=-2
nên \(\dfrac{10}{a-3}=-2\)
\(\Leftrightarrow a-3=-5\)
hay a=-2
a) Để x nguyên thì \(10⋮a-3\)
\(\Leftrightarrow a-3\inƯ\left(10\right)\)
\(\Leftrightarrow a-3\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(a\in\left\{4;2;5;1;8;-2;13;-7\right\}\)
để\(\frac{2}{2a+1}\)thuộc Z thì 2 phải chia hết cho 2a+1
2 chia hết cho 2a+1
và 2 chia hết cho 1
Suy ra 2 chia hết cho 2a
hay nói cách khác 2a là ước của 2
ta có bảng sau:
Suy ra a=1,-1
Nếu mình có làm sai thì đừng trách mình nha !