K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2019

a

Xét \(\Delta AEB\) có:\(\widehat{ABE}=90^0;\widehat{BAE}=60^0\Rightarrow\widehat{AEB}=30^0\)

Ta có:\(\widehat{ABC}=\widehat{ABO}+\widehat{OBE}+\widehat{EBC}\Rightarrow\widehat{OBE}=180^0-90^0-60^0=30^0\)

Khi đó \(\widehat{AEB}=\widehat{OBE}=30^0\) suy ra \(\Delta EOB\) cân tại O

b

Ta có:\(\widehat{AOE}=\widehat{AOB}+\widehat{BOC}+\widehat{COE}\Rightarrow\widehat{BOC}=180^0-90^0-60^0=30^0\)

Khi đó:\(\widehat{BOI}=\widehat{IBO}=30^0\Rightarrow\Delta IOB\) cân tại I

\(\Rightarrow IO=IB\)

Xét \(\Delta OIE\) và \(\Delta BIC\) có:

\(OI=BI;\widehat{EOI}=\widehat{CBI}=90^0;\widehat{OIE}=\widehat{BIC}\left(đ.đ\right)\Rightarrow\Delta OIE=\Delta BIC\left(cgv.gn\right)\)

\(\Rightarrow OE=BC\Rightarrow OE+OA=BC+AB\Rightarrow AE=AC\)

\(\Rightarrow\Delta AEC\) cân tại A có \(\widehat{A}=60^0\) nên nó là tam giác đều.

c

Xét \(\Delta OCE\) và \(\Delta BEC\) có:\(OE=BC;\widehat{EBC}=\widehat{COE}=60^0;\widehat{EOC}=\widehat{EBC}=90^0\)

\(\Rightarrow\Delta OCE=\Delta BEC\left(cgv.gn\right)\Rightarrow OC=BE\) ( 1 )

Mặt khác:\(\widehat{ABO}=\widehat{BCE}=60^0\Rightarrow OB//CE\Rightarrow OBCE\) là hình thang.

Kết hợp với ( 1 ) ta có được tứ giác OBCE là hình thang cân.

31 tháng 3 2023

giúp mình với các bạn mình đang cần gấp ạ

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

CD là phângíac

=>AD/AC=DB/CB

=>AD/3=DB/5=(AD+DB)/(3+5)=8/8=1

=>AD=3cm; BD=5cm

a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có

OM chung

\(\widehat{AOM}=\widehat{BOM}\)

Do đó: ΔOAM=ΔOBM

=>MA=MB

Xét ΔMAF vuông tại A và ΔMBE vuông tại B có

MA=MB

\(\widehat{AMF}=\widehat{BME}\)

Do đó: ΔMAF=ΔMBE

=>MF=ME

b:

Ta có: OA=OB

=>O nằm trên đường trung trực của BA(1)

Ta có: MA=MB

=>M nằm trên đường trung trực của BA(2)

Từ (1) và (2) suy ra OM là đường trung trực của BA

=>OM\(\perp\)BA 

19 tháng 11 2016

1/ Ta có hình vẽ:

a/ Xét tam giác OAD và tam giác OBD có:

OD: cạnh chung

\(\widehat{AOD}\)=\(\widehat{BOD}\) (GT)

OA = OB (GT)

Vậy tam giác OAD = tam giác OBD (c.g.c)

=> DA = DB (2 cạnh tương ứng)

b/ Ta có: tam giác OAD = tam giác OBD (câu a)

=> \(\widehat{ODA}\)=\(\widehat{ODB}\) (2 góc tương ứng)

\(\widehat{ODA}\) + \(\widehat{ODB}\) = 1800 (kề bù)

=> \(\widehat{ODA}\)=\(\widehat{ODB}\) = \(\frac{1}{2}\)1800 = 900

=> OD \(\perp\)AB

Vậy OD vuông góc với AB

7 tháng 1 2016

nhầm ,vẽ hình ra mk cg k lm đc đâu đừng có vẽ nhé

7 tháng 1 2016

Tự vẽ hình nha bạn 

1)

a)xét tam giác AOB và COE có

OA=OC(GT)

OB+OE(GT)
AB=EC(GT)

Suy ra AOB=COE(c.c.c)

b) vì AOB=COE(câu a)

gócOAB=gócOCA(hai góc tương ứng)

 

a: Xét ΔABC vuông tại A và ΔADC vuông tại A có

AC chung

AB=AD

=>ΔABC=ΔADC

b: ΔABC=ΔADC

=>góc DCA=góc BCA

Xét ΔCHA vuông tại H và ΔCKA vuông tại K có

CA chung

góc HCA=góc KCA

=>ΔCHA=ΔCKA

=>AH=AK

c: Xét ΔHAM vuông tại H và ΔKAN vuông tại K có

AH=AK

góc HAM=góc KAN

=>ΔHAM=ΔKAN

=>AM=AN và HM=KN

CH+HM=CM

CK+KN=CN

mà CH=CK và HM=KN

nên CM=CN

CM=CN

AM=AN

=>CA là trung trực của MN

=>C,A,I thẳng hàng

a) Xét tứ giác KEDC có 

\(\widehat{KEC}=\widehat{KDC}\left(=90^0\right)\)

\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc cùng nhìn cạnh KC

Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: Xet ΔDEN và ΔFEN có

ED=EF
góc DEN=góc FEN

EN chung

=>ΔDEN=ΔFEN

=>ND=NF

=>ΔNDF cân tại N

b: ΔDEN=ΔNFE

=>góc NFE=90 độ

=>NF vuông góc EF

c: Xét ΔDEP có

DF là trung tuyến

DF=EP/2

=>ΔDEP vuông tại D