K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2019

Bài này chỉ sử dụng nhận xét này là xong

Nhận xét: Số chính phương chỉ chia ba dư 0 hoặc 1

Chứng minh như sau:

Xét số tự nhiên p, ta thấy p chỉ có 3 dạng p=3k,p=3k+1,p=3k+2 với k là số tự nhiên

Nếu p=3k thì p2=9k2 chia hết cho 3

Nếu p=3k+1 thì p2=(3k+1)2=(3k+1)(3k+1)=9k2+6k+1 chia 3 dư 1

Nếu p=3k+2 thì p2=(3k+2)2=(3k+2)(3k+2)=9k2+12k+4 chia 3 dư 1

Thế cho nên với p là số tự nhiên bất kì thì p2 chia 3 dư 1 hoặc 0

Bước chứng minh hoàn tất

Bây giờ áp dụng vào bài toán

Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3

Vậy theo nhận xét vừa rồi ta có p2 chia 3 dư 1 (vì p không chia hết cho 3)

Do đó p2-1 chia hết cho 3

5 tháng 9 2019

À mà mình có cách này ngắn hơn cách trước

Ta có bước phân tích sau:p2-1=(p2+p)+(-p-1)=p(p+1)-(p+1)=(p+1)(p-1)

Vậy thì p2-1=(p+1)(p-1)

Nhân p vào hai vế ta được p(p2-1)=(p-1)p(p+1)

Lúc này ta có (p-1),p,(p+1) là 3 số tự nhiên liên tiếp

Thế cho nên có ít nhất một số chia hết cho 3 trong ba số trên

Do đó (p-1)p(p+1) chia hết cho 3

Do đó p(p2-1) chia hết cho 3

Mà p là số nguyên tố lớn hơn 3 nên hiển nhiên không chia hết cho 3

Vậy p2-1 chia hết cho 3

22 tháng 12 2015

3)                         CM:p+1 chia hết cho 2

vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.

Vậy p+1 chia hết cho 2

                             CM:p+1 chia hết cho 3

Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)

Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3

Vậy p+1 chia hết cho 3

Mà ƯCLN(2,3) là 1

Vậy p+1 chia hết cho 2x3 là 6

Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.  

14 tháng 9 2023

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó

 

Một số nguyên tố > 3 thì sẽ có dạng 3k + 1 hoặc 3k + 2 

Với p= 3k + 1 suy ra p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 là hợp số 

Vậy : p=3k + 2 .Ta có : p + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 ( 1 )

Vì  : p là SNT > 3 suy ra PLA số lẻ , suy ra p + 1 là số chẵn ( số lẽ + số lẽ = số chẵn )suy ra p+1 chia hết cho 2 ( 2 )

Từ ( 1 ) và  ( 2 ) suy ra p + 1 chia hết cho 6 ( một số chia hết hết cho 2 và 3 , chia hết cho 6 )

khó quá chtt nhé Khuất Tuấn Anhavt305023_60by60.jpg

22 tháng 2 2018

29 tháng 11 2018

p là số nguyên tố lớn hơn 3 nên p lẻ, do đó p+1 ⋮ 2 (1)

p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.

Dạng 3k+1 không xảy ra.

Dạng 3k+2 cho ta p+13 (2).

Từ (1) và (2) cho ta p+16

25 tháng 11 2019

Vì p là số nguyên tố lớn hơn 3 nên p có dạng 6k-1 hoặc 6k+1nếu p=6k+1 thì p+2=6k+3=3(2k+1)chia hết cho 3 và lớn hơn 3 nên là hợp số(vô lí) do đó p=6k-1⇒p+1=6k chia hết cho 6(đpcm)

13 tháng 1 2021

b

chcmgmg yo87fp 7g 98[ tơ89'08 08