Khi chia 1 số tự nhiên cho số 4 thì được thương số dư là 3 nếu chia số đó cho số 5 thì số thương giảm đi hai đơn vị nhưng số dư vẫn là 3 tìm số tự nhiên ban đầu
Phải có lập luận
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số bị chia là và số chia là (a, b thuộc N*)
Theo đề bài ta có:
=2 +x
và =2 +(x-100)
Trừ hai vế cho nhau ta có:
- =2 +x-2 -x+100
=>100a=200b+100
=>a=2b+1
Từ điều kiện ban đầu và a là số lẻ (đẳng thức trên)=>a thuộc {3;5;7;9}
Xét từng trường hợp ta được a={3;5;7;9}
Vậy ta có 4 cặp số ( ; ) thỏa mãn đề bài:
(333;111);(555;222);(777;333);(999;444)
Gọi số cần tìm là A (100\(\le\)A\(\le\)9990)
thương và số dư là r (r \(\in\)N*)
Theo bài ra ta có:
A=75r+r
A=76r
A là 1 số chia hết cho 76 có 3 chữ số lớn nhất
Ta có: 999:76=13 (dư11)
A= 999-11=988
Vậy A = 988
1) Gọi thương của phép chia a chia cho 54 là q
Ta có a: 54 = q (dư 38) => a = 54q + 38
=> a = 18.3q + 18.2 + 2 = 18.(3q + 2) + 2
=> a chia cho 18 được thương là 3q + 2; dư 2
Theo bài cho 3q + 2 = 14 => 3q = 12 => q = 4
Vậy a = 54.4 + 38 = 254
2) Gọi số bị trừ là a; số trừ là b
a tận cùng là 3; Khi bỏ đi chữ số 3 ta được số b => a - 3 = 10b => a = 10b + 3
Theo bài cho: a - b = 57 => (10b + 3) - b = 57 => 10b - b = 57 - 3 => 9b = 54 => b = 6 => a = 6.10 + 3 = 63
Vậy hai số đó là 63; 6
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
số tự nhiên có 2 chữ số đó là:
13x3=49
đáp số:49
Gọi số đó là a \(\left(a\in N\right)\)ta có :
a = 4k+3=5(k-2) +3
=5k-10+3 = 5k-7
\(\Rightarrow4k+3=5k-7\)
\(\Rightarrow4k+10=5k\)
\(\Rightarrow k=10\)
\(\Rightarrow k=43\)
Vậy số cần tìm là : 43
Chúc bạn học tốt !!!