Tìm a, b, c:
\(\left(a-7\right)^2+\left(3b+2\right)^4+\left(4c-5\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
Mà \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)
Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)
- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
Câu hỏi của ✨♔♕ Saiko ♕♔✨ - Toán lớp 6 - Học toán với OnlineMath
\(64=\left(a^2+a+2\right)\left(b+1\right)^2\left(c^2+3c\right)\)
\(=\left(a^2+a+1+1\right)\left(b^2+b+b+1\right)\left(c^2+c+c+c\right)\)
\(\ge4.\sqrt[4]{a^3}.4.\sqrt[4]{b^4}.4.\sqrt[4]{c^5}\)
\(=64\sqrt[4]{a^3b^4c^5}\)
\(\Rightarrow\sqrt[4]{a^3b^4c^5}\le1\)
\(\Leftrightarrow a^3b^4c^5\le1\)
Bài 1:
\(\Leftrightarrow\left(\dfrac{1}{11}-\dfrac{1}{21}\right)\cdot462-\left[2.04:\left(x+1.05\right)\right]:0.12=19\)
\(\Leftrightarrow\left[2.04:\left(x+1.05\right)\right]:0.12=1\)
\(\Leftrightarrow2.04:\left(x+1.05\right)=0.12\)
\(\Leftrightarrow x+1.05=17\)
hay x=15,85
b: Ta có: \(\left(4x-y\right)\left(4x+y\right)-2\left(3x-2y\right)^2+\left(x-3y\right)^2\)
\(=16x^2-y^2-2\left(9x^2-12xy+4y^2\right)+x^2-6xy+9y^2\)
\(=17x^2-6xy+8y^2-18x^2+24xy-8y^2\)
\(=-x^2+18xy\)
c: Ta có: \(\left(2a-3b+4c\right)\left(2a-3b-4c\right)\)
\(=\left(2a-3b\right)^2-16c^2\)
\(=4a^2-12ab+9b^2-16c^2\)
\(a^2-b^2-c^2=0\Rightarrow c^2=a^2-b^2\)
\(\left(5a-3b+4c\right)\left(5a-3b-4c\right)\)
\(=\left(5a-3b\right)^2-\left(4c\right)^2\)
\(=25a^2-30ab+9b^2-16c^2\)
\(=25a^2-30ab+9b^2-16\left(a^2-b^2\right)\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a\right)^2-2.3a.5b+\left(5b\right)^2=\left(3a-5b\right)^2\)
Chúc bạn học tốt.
nhầm: (4c - 5)6
t làm tắt
Vế phái lớn hơn hoặc bằng 0
nên nó =0 khi \(\hept{\begin{cases}a-7=0\\3b+2=0\\4c-5=0\end{cases}}\)giải ra